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Data processing algorithms for tomography

Welcome to Algotom’s documentation about data processing algorithms for tomography.
This documentation is not only to explain functions available in the Algotom
package but also to present tomography-related tutorials, technical notes, and
applications.

Source code: https://github.com/algotom/algotom
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1.1. Python for tomography scientists as beginners

It is common that well-made software cannot provide all the tools for scientists
to perform their analysis. In such cases, knowing how to program becomes crucial.
There are many open-source programming languages to choose, in which Python and its rich
ecosystem are dominantly used in the science community for its ease-of-use. This section
dedicates to whom would like to write Python codes to process their data but
don’t know where to start. There are many ways/resources to install/learn Python,
however, the section focuses to present approaches which are easy-to-follow and practical.


1.1.1. Installing Python and tools for writing codes

To start, users need to install two software: one is Python and one is for
writing codes, known as IDE (Integrated Development Environment) software.
The second one is optional but it’s important for coding and debugging efficiently.
Python can be downloaded and installed through Anaconda [https://www.anaconda.com/products/individual]
which not only distributes Python and its ecosystem but also Conda [https://docs.conda.io/projects/conda/en/latest/user-guide/install/download.html],
a package management software, to install Python libraries with easy. These open-source
libraries, contributed by the developer community, are the main reason for the
popularity of Python.

After installing Anaconda, users can run Anaconda Powershell Prompt (e.g. on WinOS)
to manage and install Python packages (i.e. libraries). A collection of Python
packages installed is known as an environment. An environment created by a
package manager (e.g. Conda) helps to deal with the conflict of Python packages
using different versions of dependencies. This link [https://www.freecodecamp.org/news/why-you-need-python-environments-and-how-to-manage-them-with-conda-85f155f4353c/]
is useful for whom want to know more about Python environment. There is a
list [https://docs.anaconda.com/anaconda/packages/pkg-docs/] of popular
Python libraries shipped with Anaconda, known as the base environment. To install
Python packages out of the list, it’s a good practice that users should create a
separate environment from the base. Instructions of how to create a new environment
and how to install new packages are here [https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html]
and here [https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-pkgs.html].


[image: ../../_images/fig_1_1_1.png]
Fig. 1.1.1 Combination of conda commands to: create an environment named algotom, install
Python 3.9, activate the environment, then install the algotom package from
the algotom channel [https://anaconda.org/algotom].



The next step is to install an IDE software for writing codes. There are many free
choices: Pycharm (Community edition) [https://www.jetbrains.com/pycharm/download/],
Pydev, Spyder, or VS Code. Here, we recommend to use Pycharm because it is
charming as the name suggested. After installing Pycharm, users have to configure the
software to link to a Python interpreter by pointing to the location of Python
packages installed (Fig. 1.1.2).


[image: ../../_images/fig_1_1_2.png]
Fig. 1.1.2 Demonstration of how to configure Pycharm to link to a Python environment.






1.1.2. Python ecosystem of libraries

The power and popularity of Python come from its enormous ecosystem. Crucially,
supporting tools such as Conda, Pip, and Github make it very easy for developers/users
to develop/install Python libraries. Nowadays, imaging scientists can use Python
libraries to perform almost every task in the workflow from data acquisition,
data processing, data analysis, to data visualization. Python libraries can be
classified into a few types. The first one is the standard library [https://docs.python.org/3/library/],
i.e. the built-in packages. They are shipped with Python. The second type is well-developed
and popular libraries maintained by dedicated software development teams. List of
such libraries can be found in this link [https://docs.anaconda.com/anaconda/packages/pkg-docs/]
which are shipped with Anaconda software [https://www.anaconda.com/products/individual].
The third type are libraries developed by organizations, academic institutions, or research groups
dedicated to specific technical/scientific areas. The last type of libraries
is contributed by individuals who would like to share their works.

A Python package is commonly built based on other Python libraries known as dependencies.
This can cause conflicts between libraries using different versions of the same
libraries. In such cases, a package manager like Conda is crucially needed.
Python libraries are distributed through https://anaconda.org/ and https://pypi.org/.
Users can search packages they need in these websites where instructions of
how to install these packages using the conda or pip command are shown on
the page of each package. Lots of Python packages are distributed on both platforms.
However, there are packages only available in one platform. Fortunately, Conda allows
to use pip to install packages as well. Users are recommended to check this tutorial [https://www.freecodecamp.org/news/why-you-need-python-environments-and-how-to-manage-them-with-conda-85f155f4353c/]
to know more about the difference between conda and pip.

The following list shows some Python packages which are useful for the tomography
community. The selected packages are installable using conda/pip and work across
OS (Windows, Linux, Mac).


	Numerical computing: Numpy, Scipy, Pyfftw, Pywavelets, …


	Image processing: Scikit-image, Pillow, Discorpy, Opencv, …


	Tomographic data processing: Tomopy, Astra Toolbox, Algotom, Cil, …


	GPU computing: Numba, Cupy, …


	Hdf file handling: H5py


	Data visualisation: Matplotlib, Vtk, …


	Parallel processing: Joblib, Dask, …




There are other Python software for processing tomographic data such as Savu,
Tigre, tofu-ufo, or Pyhst2. However, they either don’t work across OS or are not
distributed with conda/pip.




1.1.3. Where/how to start coding

Python is the programming language that one can learn easily using the top-down
approach instead of the bottom-up one which takes time. For example, one can
start by asking questions such as: how to read an image, apply a smoothing
filter, and save the result; then finding the answers using Google, Stackoverflow [https://stackoverflow.com/search?q=how+to+read+an+image+Python],
or referring codes shared on Github [https://github.com/]. The following presents
notes and tips about Python users may find useful before diving into coding.


	For quickly getting to know the syntax of the Python language, the python-course.eu
website [https://python-course.eu/python-tutorial/structuring-indentation.php]
is a good place to start.


	In computational applications, we don’t often use the standard library of
Python but the Numpy [https://numpy.org/doc/stable/reference/routines.html] library.
Almost all of computational Python-libraries are built on top of Numpy. Although
it is a backbone for the success of Python, Numpy is not included into the standard
library of Python. Users have to install it separately, or they can just install
a package which has Numpy as a dependency. The following codes show
an example of how to find the sum of a list of float numbers using both
approaches: the standard library and Numpy. A rule of thumb is to avoid
using the standard library for computational works which use looping
operations. Numpy provides most of basic tools, optimized for speed,
to perform math operations on n-dimension arrays. Users can build complex
applications on top of these tools.

import numpy as np

vals = [1.0, 3.0, 5.0, 7.0, 8.0]
# Using the standard lib
sum = 0.0
for i in vals:
    sum = sum + i
# Using Numpy
sum = np.sum(np.asarray(vals))







	Functions (known as methods) in each Python library is organized into folders,
sub-folders (known as packages), then Python files (known as modules). Users
can use functions needed by importing a whole package, specific sub-packages,
specific modules, or specific methods.

import scipy  # Load the whole package
from scipy import ndimage as ndi # Import sub-package, give it an alias name.
import scipy.ndimage as ndi # Another way to import sub-packge.
import scipy.ndimage.filters as fil # Import a module, give it an alias name.
from scipy.ndimage.filters import gaussian_filter # Import a specific method in a module.





Because Python libraries are a huge collection of functions, users better use
the help of IDE software to find the right functions as demonstrated in
Fig. 1.1.3. Using alias names for importing packages is a good
practice to avoid the naming conflict, i.e. a user-defined function is named
the same as a function in the library.


[image: ../../_images/fig_1_1_3.png]
Fig. 1.1.3 Demonstration of how Pycharm can help to see a list of available functions.





	There are n-dimension array objects created by different Python libraries
which look similar but their properties and uses are different. Users have
to make sure that they use the right methods on the right objects.

import numpy as np
import dask.array as da
import cupy as cp

data = [[1.0, 2.0, 3.0], [3.0, 4.0, 5.0]] # Python-list object
data_np = np.asarray(data) # Numpy-array object
data_da = da.from_array(data_np) # Dask-array object
data_cp = cp.array(data) # Cupy-array object







	To use functions from Python packages in a script, users use the import command
as shown above. When the command is executed, the Python interpreter automatically
checks a few places to find such packages: paths in the system environment
variables (e.g. WinOS: “Edit the system environment variables”
-> “Environment variable”), paths in the current Python environment
(e.g. WinOS: “C:Users<user_ID>Anaconda3envs<env_name>”), and the current location
of the script. If the import fails, users need to check: if the package is
installed (e.g. using conda list in an activated environment) and/or if
the package is at the same path as the script.

In Pycharm, if a package keeps
failing to import [https://intellij-support.jetbrains.com/hc/en-us/articles/360010202240-PyCharm-can-t-install-import-a-package-library-module#:~:text=Troubleshooting%3A,and%20then%20do%20the%20test.]
, even though the package is installed and the Pycharm project is
configured to the right Python environment, users can try one of the following ways:



	Run conda init.


	Run Pycharm from the activated environment (e.g Win OS: Powershell Prompt -> conda activate <env_name> -> pycharm)







If users want to add the path to a package manually, they can do that as follows.

import sys
sys.path.insert(0, "C:/<Path-to-package>")
import <package-name>





this is handy when users download a Python package somewhere and want to import
its functions to the current script without installing the package. Note
that Python libs (dependencies) used by the package need to be installed.



	Video tutorials are the best resources to learn new things quickly. There are
many amazing tutorials on Youtube.com (free), Udemy.com (not free but at
affordable price). They teach nearly everything about Python and its ecosystem.
For tomography scientists, the youtube channel [https://www.youtube.com/c/DigitalSreeni/playlists]
of Dr. Sreenivas Bhattiprolu is highly recommended. The uploaded tutorials
accompanied by Python codes [https://github.com/bnsreenu/python_for_microscopists]
cover from basic topics of image processing [https://www.youtube.com/playlist?list=PLHae9ggVvqPgyRQQOtENr6hK0m1UquGaG]
to advanced topics such as image segmentation and deep-learning [https://www.youtube.com/c/DigitalSreeni/playlists].










            

          

      

      

    

  

    
      
          
            
  
1.2. Common data format at synchrotron facilities

Two types of data format often used at most of synchrotron facilities are
tiff and hdf. Hdf (Hierarchical Data Format [https://www.hdfgroup.org/solutions/hdf5/])
format allows to store multiple data-sets, multiple data-types in a single file.
This solves a practical problem of collecting all data associated with an experiment
such as images from a detector, stage positions, or furnace temperatures into
one place for easy of management. More than that, hdf format allows to read/write
subsets of data to memory/disk. This capability enables to process a large size
dataset using a normal computer. Tiff format is used because it is
supported by most of image-related software and it can store 32-bit grayscale
values.


1.2.1. Hdf format

How to view the structure of a hdf file


To work with a hdf file, we need to know its structure or how to access
its contents. This can be done using a lightweight software such as
Hdfview [https://portal.hdfgroup.org/display/support/Download+HDFView]
(Fig. 1.2.1). Version 2.14 seems stable and is easy-to-install for WinOS.
List of other hdf-viewer software can be found in this
link [https://www.hdfeos.org/software/tool.php]. A wrapper of the
hdf format known as the nexus [https://www.nexusformat.org/] format
is commonly used at neutron, X-ray, and muon science facilities. We can use
the same software and Python libraries to access both hdf and nxs files.


[image: ../../_images/fig_1_2_1.png]
Fig. 1.2.1 Viewing the structure of a nxs/hdf file using the Hdfview software.



Another way to display a tree view of a hdf/nxs file is to use an Algotom’s
function as shown below.


[image: ../../_images/fig_1_2_2.png]
Fig. 1.2.2 Displaying the tree view of a nxs/hdf file using an Algotom’s function.



There are many GUI software in Python for viewing hdf/nxs/h5 files such as: Broh5 [https://github.com/algotom/broh5],
Nexpy [https://nexpy.github.io/nexpy/], or Vitables [https://github.com/uvemas/ViTables].




How to load datasets from a hdf file


Utilities for accessing a hdf/nxs file in Python are available in the h5py [https://docs.h5py.org/]
library. To load/read a dataset to a Python workspace, we need a key, or path, to
that dataset in a hdf/nxs file.

import h5py

file_path = "E:/Tomo_data/68067.nxs" # https://doi.org/10.5281/zenodo.1443568
hdf_object = h5py.File(file_path, 'r')
key = "entry1/tomo_entry/data/data"
tomo_data = hdf_object[key]
print("Shape of tomo-data: {}".format(tomo_data.shape))
#>> Shape of tomo-data: (1861, 2160, 2560)





An important feature of a hdf format is that we can load subsets of data as
demonstrated below.

import psutil

mem_start = psutil.Process().memory_info().rss / (1024 * 1024)
projection = tomo_data[100, :, :]
mem_stop = psutil.Process().memory_info().rss / (1024 * 1024)
print("Memory used for loading 1 projection : {} MB".format(mem_stop - mem_start))
#>> Memory used for loading 1 projection : 11.3828125 MB

mem_start = psutil.Process().memory_info().rss / (1024 * 1024)
projections = tomo_data[102:104, :, :]
mem_stop = psutil.Process().memory_info().rss / (1024 * 1024)
print("Memory used for loading 2 projections : {} MB".format(mem_stop - mem_start))
#>> Memory used for loading 2 projections : 21.09765625 MB





Using functions of h5py’s library directly is quite inconvenient. Algotom’s API [https://algotom.readthedocs.io/en/latest/api/algotom.io.loadersaver.html]
provides wrappers for these functions to make them more easy-to-use. Users can load hdf
files, find keys to datasets, or save data in the hdf format by using a single
line of code.

import algotom.io.loadersaver as losa

file_path = "E:/Tomo_data/68067.nxs"
keys = losa.find_hdf_key(file_path, "data")[0] # Find keys having "data" in the path.
print(keys)
tomo_data = losa.load_hdf(file_path, keys[0]) # Load a dataset object
print(tomo_data.shape)








Notes on working with a hdf file


When working with multiple slices of a 3d data, it’s faster to load them into
memory chunk-by-chunk then process each slice, instead of loading and processing
slice-by-slice. Demonstration is as follows.

import timeit
import scipy.ndimage as ndi
import algotom.io.loadersaver as losa

file_path = "E:/Tomo_data/68067.nxs"
tomo_data = losa.load_hdf(file_path, "entry1/tomo_entry/data/data")
chunk = 16

t_start = timeit.default_timer()
for i in range(1000, 1000 + chunk):
    mat = tomo_data[:, i, :]
    mat = ndi.gaussian_filter(mat, 11)
t_stop = timeit.default_timer()
print("Time cost if loading and processing each slice: {}".format(t_stop - t_start))
#>> Time cost if loading and processing each slice: 10.171918900000001

t_start = timeit.default_timer()
mat_chunk = tomo_data[:, 1000:1000 + chunk, :]  # Load 16 slices in one go.
for i in range(chunk):
    mat = mat_chunk[i]
    mat = ndi.gaussian_filter(mat, 11)
t_stop = timeit.default_timer()
print("Time cost if loading multiple-slices: {}".format(t_stop - t_start))
#>>Time cost if loading multiple-slices: 0.10050070000000133





Parallel loading datasets from a hdf file is possible [https://docs.h5py.org/en/stable/mpi.html].
However, this feature may be not enabled for WinOS.
When working with large datasets using a small RAM computer, we may have to
write/read intermediate results to/from disk as hdf files. In such cases, it
is worth to check tutorials [https://docs.h5py.org/en/stable/high/dataset.html?highlight=chunking#chunked-storage]
on how to optimize hdf I/O performance.







1.2.2. Tiff format

This is a very popular file format and supported by most of image-related software.
There are 8-bit, 16-bit, and 32-bit format. 8-bit format can store grayscale
values as 8-bit unsigned integers (range of 0 to 255 = 2 8 - 1).
16-bit format can store unsigned integers in the range of 0 to 65535
(2 16 - 1). 32-bit format is used to store 32-bit float data.
Most of image viewer software can display a 8-bit or 16-bit, but not 32-bit tiff
image. Users may see a black or white image if opening a 32-bit tiff image using
common photo viewer software. In such cases, Imagej [https://imagej.nih.gov/ij/download.html]
or Fiji [https://imagej.net/software/fiji/downloads] software can be used.


[image: ../../_images/fig_1_2_3.png]
Fig. 1.2.3 Opening a 32-tiff image using Photos software (a) and Imagej software (b).



Sometimes users may want to extract a 2D slice of 3D tomographic data and
save the result as a tiff image for checking using ImageJ or photo viewer
software. This can be done as shown below.

import algotom.io.loadersaver as losa

file_path = "E:/Tomo_data/68067.nxs"
tomo_data = losa.load_hdf(file_path, "entry1/tomo_entry/data/data")
losa.save_image("E:/Tomo_data/Output/proj.tif", tomo_data[100, :, :])





If tomographic data are acquired as a list of tiff files, it can be useful to
convert them to a single hdf file first. This allows to extract subsets of
the converted data for reconstructing a few slices or tweaking artifact
removal methods before performing full reconstruction.

import numpy as np
import algotom.io.loadersaver as losa
import algotom.io.converter as conv

proj_path = "E:/Tomo_data/68067/projections/"
flat_path = "E:/Tomo_data/68067/flats/"
dark_path = "E:/Tomo_data/68067/darks/"
output_file = "E:/Tomo_data/68067/tomo_68067.hdf"

# Load flat images, average them.
flat_path = losa.find_file(flat_path + "/*.tif*")
height, width = np.shape(losa.load_image(flat_path[0]))
num_flat = len(flat_path)
flat = np.zeros((num_flat, height, width), dtype=np.float32)
for i in range(num_flat):
    flat[i] = losa.load_image(flat_path[i])
flat = np.mean(flat, axis=0)

# Load dark images, average them.
dark_path = losa.find_file(dark_path + "/*.tif*")
num_dark = len(dark_path)
dark = np.zeros((num_dark, height, width), dtype=np.float32)
for i in range(num_dark):
    dark[i] = losa.load_image(dark_path[i])
dark = np.mean(dark, axis=0)

# Generate angles
num_angle = len(losa.find_file(proj_path + "/*.tif*"))
angles = np.linspace(0.0, 180.0, num_angle)
# Save tiffs as a single hdf file.
conv.convert_tif_to_hdf(proj_path, output_file, key_path="entry/projection",
                        option={"entry/flat": np.float32(flat),
                                "entry/dark": np.float32(dark),
                                "entry/rotation_angle": np.float32(angles)})





Reconstructed slices from tomographic data are of 32-bit data, which often
saved as 32-bit tiff images for easy to work with using analysis software
such as Avizo [https://www.thermofisher.com/uk/en/home/electron-microscopy/products/software-em-3d-vis/3d-visualization-analysis-software.html],
Dragon Fly [https://www.theobjects.com/dragonfly/get-non-commercial-licensing-program.html],
or Paraview [https://www.paraview.org/download/]. Some of these software may not
support 32-bit tiff images or the 32-bit data volume is too big for computer memory. In
such cases, we can rescale these images to 8-bit tiffs or 16-bit tiffs.  It is
important to be aware that rescaling causes information loss. The global extrema
or user-chosen percentile of a 3D dataset or 4D dataset (time-series tomography)
need to be used for rescaling to limit the loss. This functionality is available
in Algotom as demonstrated below. Users can refer to Algotom’s API to know how
data are rescaled to lower bits.

import algotom.post.postprocessing as post

file_path = "E:/Tomo_data/recon_68067.hdf"
output_path = "E:/Tomo_data/rescale_8_bit/"
post.rescale_dataset(file_path, output_path, nbit=8, minmax=None)











            

          

      

      

    

  

    
      
          
            
  
1.3. Basic components of an X-ray tomography system


1.3.1. How tomography works

[image: ../../_images/fig_1_3_0.png]
As demonstrated above, tomography is an imaging technique by which the
internal 3D structure of a      sample can be reconstructed from 2D projections
formed by the penetration of radiation through the sample at a series of
different angles in the range of [0; 180-degree]. If the radiation rays are
parallel, the obtained 2D projections can be separated into independent
1D-projection rows. The sequence of these rows throughout the angular
projection range forms a sinogram, i.e. a 2D data array corresponding to each
individual row. Applying a reconstruction method on an individual sinogram
yields a reconstructed 2D slice of the sample (Fig. 1.3.1). Combining
all slices creates the 3D image of the sample.


[image: ../../_images/fig_1_3_1.png]
Fig. 1.3.1 Steps for reconstructing a slice in parallel-beam tomography.






1.3.2. Basic components of an X-ray tomography system


[image: ../../_images/fig_1_3_2.png]
Fig. 1.3.2 Basic components of an X-ray tomography system and problems associated with them.




1.3.2.1. X-ray source


An ideal X-ray source for tomography experiments is monochromatic, stable,
non-coherent, energy-tunable, high flux, and generates parallel beams. This
allows to produce projections of a sample closest to the prediction of a
mathematical model which is a necessary condition for reconstructing the
sample with high quality. Unfortunately, there is no such source in practice.
There are two basic ways of making X-ray sources: by hitting electrons to
a target or by changing the direction of electrons moving at near-light speed.
The first way is used in lab-based systems. The second      way is used at
synchrotron facilities.

Synchrotron-based X-ray sources are high-flux, monochromatic (by using a
monochromator), energy-tunable, and close to the parallel-beam condition.
However, their beams are partially coherent resulting in the interference
between transmission beams and scattering beams after going through samples.
This, known as the edge-enhanced effect, alters X-ray intensities
at the interfaces between different materials of samples as can be seen in
Fig. 1.3.3


[image: ../../_images/fig_1_3_3.png]
Fig. 1.3.3 Coherent source causes the edge-enhanced effect in a projection-image.



The edge-enhanced effect is useful for applications where the interfaces
between materials are more important than their densities, such as studying
crack formation in steels, rocks, or bones [https://doi.org/10.1038/srep43399].
However, this effect gives rise     to streak artifacts and causes strong fluctuations
of gray scales between interfaces in reconstructed images. These hampers the
performance of post-processing methods such as image segmentation or image rescaling.


[image: ../../_images/fig_1_3_4.png]
Fig. 1.3.4 Impacts of the edge-enhanced effect to a reconstructed image: streak
artifacts (arrowed), negative attenuation coefficients (circled).



Other problems often seen at synchrotron-based sources come from
high-heat-load monochromators. They can cause the fluctuation of source
intensity or the shift of intensity profile. These problems impact the process
of flat-field correction in tomography which results in artifacts.


[image: ../../_images/fig_1_3_5.jpg]
Fig. 1.3.5 Impacts of a monochromator to the intensity profile of a source. (a) Flat-field image.
(b) Sample image. (c) Flat-field-corrected image









1.3.2.2. Stage


In a micro-scale system, a major problem caused by the same-stage is the
positioning repeatability of the rotation axis. For collecting tomographic
data, we have to move a sample in-and-out the field of view to acquire
images without the sample (known as flat-field/white-field images) and
images with the sample (projection images). It’s quite common that the
rotation axis can be shifted a few pixels because of that. As a result, the
center of rotation (COR) in the reconstruction space is changed
(Fig. 1.3.6). This is inconvenient for the case that one collects
multiple-datasets but can’t use the same value of COR across.


[image: ../../_images/fig_1_3_6.png]
Fig. 1.3.6 Center of rotation was changed between two scans



In a nano-scale system, the main problem is the positioning accuracy of the
stage. This causes the shift between projections of a tomographic dataset.
To process such data, we have to apply image alignment/registration methods.


[image: ../../_images/fig_1_3_7.png]
Fig. 1.3.7 Shift between two projections [https://doi.org/10.1186/s12645-021-00081-z]
acquired by a nanoprobe X-ray fluorescence imaging system.









1.3.2.3. Sample


Samples can impact to the quality of reconstructed images as demonstrated in
a few examples as follows

For samples with strong variation of absorption characteristic, i.e. flat samples,
X-rays may not penetrate at some angles or detectors (mostly coupled to a
16-bit or 8-bit CCD chip) can not record such a large dynamic range of intensity.
These impacts can result in different types of artifacts as shown in Fig. 1.3.8.


[image: ../../_images/fig_1_3_8.png]
Fig. 1.3.8 Artifacts caused by a flat sample. (a) Projection at 0-degree. (b) Projection
at 90-degree. (c) Reconstructed image with partial ring artifacts [https://sarepy.readthedocs.io/toc/section1.html] (yellow arrow) and cupping artifacts (red arrow).



For crystalline samples, they can block X-rays at certain angles causing partially
horizontal dark-stripes in sinograms. This can affect algebraic     reconstruction-methods
as shown in Fig. 1.3.9.


[image: ../../_images/fig_1_3_9.png]
Fig. 1.3.9 Artifacts caused by a crystalline sample. (a) Sinogram. (b) Zoom-in at the
bottom-left area of (a). (c) Reconstructed image using the SART method.



Scanning biological samples using hard X-rays can result in low-contrast images (Fig. 1.3.10).
which affects the performance of post-processing methods such as segmentation or feature detection.


[image: ../../_images/fig_1_3_10.jpg]
Fig. 1.3.10 Reconstructed image of a trabecular bone sample [https://doi.org/10.1038/srep43399] using a 53keV X-ray source.









1.3.2.4. Detector


Technical problems or limitations of a detecting system can cause various types of artifacts.
The irregular response caused by defects in its hardware components, such as a scintillator or CCD chip,
gives rise to ring artifacts as described in detail here [https://sarepy.readthedocs.io/] and
shown in Fig. 1.3.11


[image: ../../_images/fig_1_3_11.jpg]
Fig. 1.3.11 Ring artifacts caused by defects of a scintillator of a detecting system. (a)
Visible defects (white blobs) on a flat field image. (b) Ring artifacts caused by these defects.



The scattering of scintillation photons [https://doi.org/10.1117/12.2530324] in a
scintillator, of an indirect X-ray detector, has a strong effect to the linear response of
the system and cause cupping artifacts in reconstructed images (Fig. 1.3.12).


[image: ../../_images/fig_1_3_12.jpg]
Fig. 1.3.12 Cupping artifacts caused by the scattering of scintillation photons. (a) Flat-field
image with a half field of view completely blocked using 0.05 s of exposure time. (b) Same
as (a) using 0.5 s of exposure time. (c) Projection image of a strong absorber. (d)
Reconstructed image. (e) Line profile along the red line in (d).



Another common component of a detecting system is a lens which can has
radial distortion problem. [https://discorpy.readthedocs.io/en/latest/tutorials.html]
This problem gives raise to distinguishable artifacts in reconstructed images where
artifacts only appear at some areas (Fig. 1.3.13).


[image: ../../_images/fig_1_3_13.jpg]
Fig. 1.3.13 Artifacts caused the lens-distortion problem. (a) Distorted image of a
grid pattern. (b) Artifacts in a reconstructed image.



Most of cameras are 16-bit, 14-bit, 12-bit, or 8-bit types. The number of bit dictates
the dynamic range of intensity a camera can record. For example, a 16-bit camera can
record intensities in the range of 0-65535 counts. In cases that the dynamic range (min-max)
of incoming intensities are out of this range no matter how we adjust the exposure time,
the acquired images can have underexposed areas or overexposed areas as shown in Fig. 1.3.14.
In tomography, for samples giving a high dynamic range of transmission intensities we
have to accept the underexposed areas which can give raise to cupping artifacts (Fig. 1.3.8).


[image: ../../_images/fig_1_3_14.jpg]
Fig. 1.3.14 Problems due to the limited dynamic range of a camera. (a) Underexposed
area. (b) Overexposed area.









1.3.2.5. Computing resources


Available computing resources such as GPU, multicore CPU, RAM, or storage system can
dictate the choice of algorithms used for processing tomographic data. Fig. 1.3.15
shows the results of using two reconstruction methods: FBP and SIRT [https://www.slaney.org/pct/pct-toc.html]
on a slice of a dataset of experiments using time-series tomography [https://doi.org/10.1073/pnas.2011716117]
at beamline I12, Diamond Light Source, UK. The SIRT returns better result.
However, it can’t be used in practice due to the huge number of datasets acquired by the experiments.
The total amount of data is ~250 TB and it would take years to reconstruct all of them using
the SIRT method.


[image: ../../_images/fig_1_3_15.jpg]
Fig. 1.3.15 Comparison of two reconstruction methods. (a) FBP. (b) SIRT.














            

          

      

      

    

  

    
      
          
            
  
1.4. Basic workflow for processing tomographic data


1.4.1. Read/write data

The first step is to know how to load data to workspace. Different
communities use different file formats: hdf/nxs, mrc, txrm, xrm, tif, dicom,
raw,… and they need specific Python libraries to work with. The common format
used by synchrotron/neutron community is hdf/nxs. To load a dataset from a hdf/nxs
file we need to know the key or path to the data. This can be done using Hdfviewer [https://portal.hdfgroup.org/display/support/Download+HDFView]
or Algotom’s function as shown in section 1.2. For a tomographic
hdf file, some basic metadata we need to know:


	Keys to projections images, flat-field images, and dark-field images.


	Key to rotation angles corresponding to projection images. This information may be
not needed if the data was acquired in the ange range of [0; 180-degree].


	If the data is from a helical scan, extra information such as pixel size,
pitch, and translation positions is needed.


	Information which is used by specific data processing methods such as pixel
size, sample-detector distance, or X-ray energy.




Fig. 1.4.1 shows the content of a hdf file where users can find key
to datasets used for tomographic reconstruction.



[image: ../../_images/fig_1_4_1.png]
Fig. 1.4.1 Datasets of a tomographic hdf file [https://tomobank.readthedocs.io/en/latest/source/data/docs.data.phasecontrast.html#multi-distance].






To load these data using Algotom’s functions:


import algotom.io.loadersaver as losa

file = "C:/data/tomo_00064.h5"
proj_img = losa.load_hdf(file, key_path="exchange/data")  # This is an hdf object, no data being loaded yet.
flat_img = losa.load_hdf(file, key_path="exchange/data_white")
dark_img = losa.load_hdf(file, key_path="exchange/data_dark")
angles = losa.load_hdf(file, key_path="exchange/theta")








Another tomographic hdf/nxs file acquired at beamline I12, Diamond Light Source (DLS) where
the file structure and keys are different to the one before. In this data,
dark-field images and flat-field images are at the same dataset as projection images
where there is a dataset named “image_key” used to distinguish these images.



[image: ../../_images/fig_1_4_2.png]
Fig. 1.4.2 Datasets of a tomographic hdf file acquired at DLS. Image-key value of 2 is
for dark-field, 1 is for flat-field, and 0 is for projection image.






We can load the data, extract a projection image, and save it to tif.


import algotom.io.loadersaver as losa

file = "E:/Tomo_data/68067.nxs"
data_img = losa.load_hdf(file, key_path="entry1/tomo_entry/data/data") # This is an hdf object.
# Extract a subset of data and save to tif
print(data_img.shape) # 1861 x 2160 x2560
losa.save_image("E:/output/image_00061.tif", data_img[61])








There are many Algotom’s functions in the IO module [https://algotom.readthedocs.io/en/latest/api.html#input-output]
to handle different tasks such as converting tif images to hdf, displaying the
hdf tree, or saving output to a hdf file.




1.4.2. Flat-field correction

The flat-field correction process is based on the Beer-Lambert’s law


\[\frac{I}{I_0} = \int_{}e^{-\alpha (x,y,z) dx}\]

in practice, it is done using the following formula


\[\frac{P_{\theta}-D}{F-D}\]

where \(P_{\theta}\) is a projection image of a sample at a rotation
angle of \(\theta\), \(D\) is a dark-field image (camera’s dark noise)
taken with a photon source off, and \(F\) is a flat-field image taken without
the sample. This can be done using Algotom as follows; data used in this
demonstration can be download from here [https://doi.org/10.5281/zenodo.1443568]


import numpy as np
import algotom.io.loadersaver as losa

file = "E:/Tomo_data/68067.nxs"
data_img = losa.load_hdf(file, key_path="entry1/tomo_entry/data/data") # This is an hdf object.
# Get image key
ikey = losa.load_hdf(file, key_path="entry1/tomo_entry/instrument/detector/image_key")
ikey = np.squeeze(np.asarray(ikey[:])) # Load data and convert to numpy 1d-array.
# Use image_key to load flat-field images and average them
dark_field = np.mean(np.asarray(data_img[np.squeeze(np.where(ikey == 2.0)), :, :]), axis=0)
flat_field = np.mean(np.asarray(data_img[np.squeeze(np.where(ikey == 1.0)), :, :]), axis=0)
# Get indices of projection images
proj_idx = np.squeeze(np.where(ikey == 0))
# Apply flat-field correction to the first projection image.
proj_img = data_img[proj_idx[0]]
flat_dark = flat_field - dark_field
nmean = np.mean(flat_dark)
flat_dark[flat_dark == 0.0] = nmean  # Handle zero division
proj_norm = (proj_img - dark_field) / flat_dark
# Save images
losa.save_image("E:/output/proj_before.tif", proj_img)
losa.save_image("E:/output/proj_after.tif", proj_norm)








Running the code gives the output images



[image: ../../_images/fig_1_4_3.jpg]





We can apply the process to a sinogram.


# Generate sinogram at the middle of an image height
(depth, height, width) = data_img.shape
sino_idx = height // 2
start = proj_idx[0]
stop = proj_idx[-1] + 1
sinogram = data_img[start:stop, sino_idx, :]
# Apply flat-field correction the sinogram
sino_norm = (sinogram - dark_field[sino_idx]) / flat_dark[sino_idx]
# Save images
losa.save_image("E:/output/sino_before.tif", sinogram)
losa.save_image("E:/output/sino_after.tif", sino_norm)








which results in



[image: ../../_images/fig_1_4_4.jpg]








1.4.3. Zinger removal

Zingers are prominent bright dots in images caused by scattered X-rays hitting
the detector system CCD or CMOS chip (Fig. 1.4.3 (a,b)). They produce
line artifacts across a reconstructed image (Fig. 1.4.3 (c)).



[image: ../../_images/fig_1_4_5.jpg]
Fig. 1.4.3 Artifacts caused by zingers. (a) Zingers in the sinogram space. (b) Zingers
in the projection space. (c) Line artifacts caused by the zingers.






Zingers are easily removed by using a method [https://algotom.readthedocs.io/en/latest/api/algotom.prep.removal.html#algotom.prep.removal.remove_zinger]
in Algotom


import algotom.prep.removal as rem

sino_rem1 = rem.remove_zinger(sino_norm, 0.005, size=2)











1.4.4. Ring artifact removal

Causes of ring artifacts and methods for removing them [R19] have been documented in detailed
here [https://sarepy.readthedocs.io/]. There are many methods to choose from
in Algotom. However the combination of methods [https://doi.org/10.1364/OE.26.028396]
has been proven to be the most effective way to clean most of ring artifact types.
Note that in the sinogram space, ring artifacts appear as stripe artifacts. Example
of how to use the methods


sino_rem2 = rem.remove_all_stripe(sino_rem1, 3.1, 51, 21)
losa.save_image("E:/output/sino_before_ring_removal.tif", sino_rem1)
losa.save_image("E:/output/sino_after_ring_removal.tif", sino_rem2)








resulting in



[image: ../../_images/fig_1_4_6.jpg]








1.4.5. Center-of-rotation determination

There are a few methods [https://algotom.readthedocs.io/en/latest/api/algotom.prep.calculation.html]
to determine the center-of-rotation. The demonstrated method [R21] below uses a 180-degree
sinogram for calculation.


import algotom.prep.calculation as calc

center = calc.find_center_vo(sino_rem2, width // 2 - 50, width // 2 + 50)
print(center) # >> 1275.25











1.4.6. Denoising or contrast enhancement

There is a method for enhancing the contrast of an image, known as the Paganin filter [https://doi.org/10.1046/j.1365-2818.2002.01010.x]
which is commonly used at synchrotron facilities. Algotom implements a
simplified version [https://doi.org/10.1364/OE.418448] of this filter, named
the Fresnel filter as it is based on the Fresnel propagator. There is
a widespread misunderstanding in the community that the resulting image of
the Paganin filter is a phase-contrast image. It is not. Because the filter acts
as a low-pass filter, it reduces noise and the dynamic range of an image. This helps
to enhance the contrast between low-contrast features which can be confused if
this enhancement comes from the phase effect. Detailed demonstration for the
argument is at here [https://www.researchgate.net/profile/Nghia-T-Vo/publication/351559034_Data_processing_methods_and_data_acquisition_for_samples_larger_than_the_field_of_view_in_parallel-beam_tomography_selected_replies_to_technical_questions_from_reviewers/data/609d2c69a6fdcc9aa7e697ea/Selected-replies-to-technical-questions-from-reviewers.pdf].

Note that a denoising filter or smoothing filter should not be used before the above
pre-processing methods (zinger removal, ring artifact removal, center calculation).
Blurring an image will impact the performance of these methods.


sino_filt1 = filt.fresnel_filter(sino_rem2, 200)
sino_filt2 = filt.fresnel_filter(sino_rem2, 1000)
losa.save_image("E:/output/sino_denoising_strength_200.tif", sino_filt1)
losa.save_image("E:/output/sino_denoising_strength_1000.tif", sino_filt2)






[image: ../../_images/fig_1_4_7.jpg]
Fig. 1.4.4 Results of using the Fresnel filter [https://algotom.readthedocs.io/en/latest/api/algotom.prep.filtering.html#algotom.prep.filtering.fresnel_filter]. (a)
Ratio = 200. (b) Ratio = 1000.









1.4.7. Image reconstruction

There are many choices for reconstruction methods and open-source software. In
the current version (<=1.1), Algotom implements two FFT-based methods which is fast enough
for a 2k x 2k x 2k dataset. Algotom also provides wrappers for other reconstruction
methods available in Tomopy (gridrec) [https://tomopy.readthedocs.io/en/latest/api/tomopy.recon.algorithm.html#tomopy.recon.algorithm.recon]
and Astra Toolbox (FBP, SIRT, SART, CGLS,…) [https://www.astra-toolbox.com/docs/algs/index.html#].

Examples of comparing reconstructed images before and after artifacts removal:


import algotom.rec.reconstruction as rec

# No need to pass angles if it's a 180-degree sinogram
rec_img1 = rec.dfi_reconstruction(sino_norm, center, angles=None)
rec_img2 = rec.dfi_reconstruction(sino_rem2, center, angles=None)
losa.save_image("E:/output/rec_with_artifacts.tif", rec_img1)
losa.save_image("E:/output/rec_artifacts_removed.tif", rec_img2)






[image: ../../_images/fig_1_4_8.jpg]





Examples of comparing reconstructed images after using the Fresnel filter with
different strengths:


rec_img3 = rec.dfi_reconstruction(sino_filt1, center, angles=None)
rec_img4 = rec.dfi_reconstruction(sino_filt2, center, angles=None)
losa.save_image("E:/output/rec_filt1.tif", rec_img3)
losa.save_image("E:/output/rec_filt2.tif", rec_img4)






[image: ../../_images/fig_1_4_9.jpg]








1.4.8. Other data processing steps


1.4.8.1. Distortion correction

If a detecting system suffers from the lens-distortion problem, the working
routine is as follows:


	Acquire a grid-pattern image [https://discorpy.readthedocs.io/en/latest/tutorials/methods.html#extracting-reference-points-from-a-calibration-image].


	Calculate distortion coefficients [R18] using the Discorpy package [https://discorpy.readthedocs.io/en/latest/usage/demo_01.html]. The output is a text file.


	Use the calculated coefficients for correction.


import numpy as np
import algotom.io.loadersaver as losa
import algotom.prep.correction as corr
import algotom.prep.removal as remo
import algotom.prep.calculation as calc
import algotom.prep.filtering as filt
import algotom.rec.reconstruction as reco

# Paths to data. Download at: https://doi.org/10.5281/zenodo.3339629
proj_path = "E:/data/tomographic_projections.hdf"
flat_path = "E:/data/flats.hdf"
dark_path = "E:/data/darks.hdf"
coef_path = "E:/data/coefficients_bw.txt"
key_path = "/entry/data/data"

# Where to save the outputs
output_base = "E:/output/"

# Load data of projection images as an hdf object
proj_data = losa.load_hdf(proj_path, key_path)
(depth, height, width) = proj_data.shape

# Load flat-field images and dark-field images, average each of them
flat_field = np.mean(losa.load_hdf(flat_path, key_path)[:], axis=0)
dark_field = np.mean(losa.load_hdf(dark_path, key_path)[:], axis=0)
# Load distortion coefficients
xcenter, ycenter, list_fact = losa.load_distortion_coefficient(coef_path)
# Apply distortion correction to dark- and flat-field image.
flat_discor = corr.unwarp_projection(flat_field, xcenter, ycenter, list_fact)
dark_discor = corr.unwarp_projection(dark_field, xcenter, ycenter, list_fact)

# Generate a sinogram with distortion correction.
index = 800
sinogram = corr.unwarp_sinogram(proj_data, index, xcenter, ycenter, list_fact)
sinogram = corr.flat_field_correction(sinogram, flat_discor[index], dark_discor[index])
sinogram = remo.remove_all_stripe(sinogram, 3.0, 51, 17)
center = calc.find_center_vo(sinogram, width // 2 - 50, width // 2 + 50)
# Reconstruct image from the sinogram
rec_img = reco.dfi_reconstruction(sinogram, center, angles=None, apply_log=True)
losa.save_image(output_base + "/rec_00800.tif", rec_img)






[image: ../../_images/fig_1_4_10.jpg]












1.4.8.2. Sinogram stitching for a half-acquisition scan

Half-acquisition scanning technique are being used more often at synchrotron facilities [https://doi.org/10.1364/OE.418448].
It is a simple technique to double the field-of-view (FOV) of a tomography system
by shifting the rotation axis to a side of the FOV then acquiring data in the
angle range of [0, 360-degree]. To process the data, a 360-degree sinogram is
converted to an equivalent 180-degree sinogram by stitching two halves of
the 360-degree sinogram, before reconstruction. For stitching, we need to know
either the center-of-rotation, or the overlap-area and overlap-side between
two halves of the sinogram. Algotom provides methods [https://algotom.readthedocs.io/en/latest/api/algotom.prep.calculation.html#algotom.prep.calculation.find_center_360]
[C1] for automatically finding these parameters.


import numpy as np
import algotom.io.loadersaver as losa
import algotom.prep.correction as corr
import algotom.prep.removal as remo
import algotom.prep.calculation as calc
import algotom.prep.conversion as conv
import algotom.rec.reconstruction as reco

input_base = "E:/data/"
output_base = "E:/output/"

# Data at: https://doi.org/10.5281/zenodo.4386983
proj_path = input_base + "/scan_00008/projections_00000.hdf"
flat_path = input_base + "/scan_00009/flats_00000.hdf"
dark_path = input_base + "/scan_00009/darks_00000.hdf"
meta_path = input_base + "/scan_00008/scan_00008.nxs"
key_path = "/entry/data/data"
angle_key = "/entry1/tomo_entry/data/rotation_angle"

data = losa.load_hdf(proj_path, key_path)
(depth, height, width) = data.shape
angles = np.squeeze(np.asarray(losa.load_hdf(meta_path, angle_key)[:]))
# Load dark-field images and flat-field images, averaging each result.
flat_field = np.mean(losa.load_hdf(flat_path, key_path)[:], axis=0)
dark_field = np.mean(losa.load_hdf(dark_path, key_path)[:], axis=0)

# Generate a sinogram and perform flat-field correction.
index = height // 2
sino_360 = corr.flat_field_correction(data[:, index, :], flat_field[index], dark_field[index])

# Calculate the center-of-rotation, the overlap-side and overlap-area used for stitching
(center0, overlap, side, _) = calc.find_center_360(sino_360, 100)

# Remove zingers
sino_360 = remo.remove_zinger(sino_360, 0.08)
# Remove ring artifacts
sino_360 = remo.remove_all_stripe(sino_360, 3, 51, 17)
# Convert the 360-degree sinogram to the 180-degree sinogram.
sino_180, center1 = conv.convert_sinogram_360_to_180(sino_360, center0)
losa.save_image(output_base + "/sino_360.tif", sino_360)
losa.save_image(output_base + "/sino_180.tif", sino_180)

# Perform reconstruction
rec_img = reco.dfi_reconstruction(sino_180, center1, apply_log=True)
losa.save_image(output_base + "/rec_img_1.tif", rec_img)

# 2nd way: extend the 360-degree sinogram. It's useful for tomography fly-scans
# where the two halves of a 360-degree sinogram are mismatch due to the angle
# step is not divisible.
(sino_ext, center2) = conv.extend_sinogram(sino_360, center0)
# Perform reconstruction
# Using fbp-method for angle range > 180 degree
img_rec = reco.fbp_reconstruction(sino_ext, center2, angles=angles * np.pi / 180.0,
                                  apply_log=False, gpu=True)
losa.save_image(output_base + "/rec_img_2.tif", img_rec)






[image: ../../_images/fig_1_4_11.jpg]













            

          

      

      

    

  

    
      
          
            
  
1.5. Parallel processing in Python

Having a multicore CPU, certainly we want to make use of it for parallel processing. This is
easily done using the Joblib [https://joblib.readthedocs.io/en/latest/] library.
Explanation of the functions is as follow


from joblib import Parallel, delayed

# Note the use of parentheses
results = Parallel(n_jobs=8, prefer="threads")(delayed(func_name)(func_para1, func_para2) for i in range(i_start, i_stop, i_step))








The first part of the code, Parallel(n_jobs=8, prefer="threads") , is to select the number of cores and a backend method [https://joblib.readthedocs.io/en/latest/generated/joblib.Parallel.html#examples-using-joblib-parallel]
for parallelization. The second part of the code, (delayed()() for ...) has 3 sub-sections: the name of a function,
its parameters, and the loop. We can also use nested loops


results = Parallel(n_jobs=8, prefer="threads")(delayed(func_name)(func_para1, func_para2) for i in range(i_start, i_stop, i_step) \
                                                                                         for j in range(j_start, j_stop, j_step))








Note that results is a list of the outputs of the function used. The order of the items in the list
corresponding to how the loops are defined. The following examples will make things more clear.



	Example to show the output order of nested loops:

from joblib import Parallel, delayed

def print_order(i, j):
    print("i = {0}; j = {1} \n".format(i, j))
    return i, j

results = Parallel(n_jobs=4, prefer="threads")(delayed(print_order)(i, j) for i in range(0, 2, 1) \
                                                                          for j in range(2, 4, 1))
print("Output = ", results)





>>>
i = 0; j = 2
i = 0; j = 3
i = 1; j = 2
i = 1; j = 3
Output =  [(0, 2), (0, 3), (1, 2), (1, 3)]







	Example to show how to apply a smoothing filter to multiple images in parallel

import timeit
import multiprocessing as mp
import numpy as np
import scipy.ndimage as ndi
from joblib import Parallel, delayed

# Select number of cpu cores
ncore = 16
if ncore > mp.cpu_count():
    ncore = mp.cpu_count()

# Create data for testing
height, width = 3000, 5000
image = np.zeros((height, width), dtype=np.float32)
image[1000:2000, 1500:3500] = 1.0
n_slice = 16
data = np.moveaxis(np.asarray([i * image for i in range(n_slice)]), 0, 1)
print(data.shape) # >>> (3000, 16, 5000)

# Using sequential computing for comparison
t0 = timeit.default_timer()
results = []
for i in range(n_slice):
    mat = ndi.gaussian_filter(data[:, i, :], (3, 5), 0)
    results.append(mat)
t1 = timeit.default_timer()
print("Time cost for sequential computing: ", t1 - t0) # >>> 8.831482099999999

# Using parallel computing
t0 = timeit.default_timer()
results = Parallel(n_jobs=16, prefer="threads")(delayed(ndi.gaussian_filter)(data[:, i, :], (3, 5), 0) for i in range(n_slice))
t1 = timeit.default_timer()
print("Time cost for parallel computing: ", t1 - t0)   # >>> 0.8372323000000002

# As the output is a list we have to convert it to a numpy array
# and reshape to get back the original shape
results = np.asarray(results)
print(results.shape)  # >>> (16, 3000, 5000)
results = np.moveaxis(results, 0, 1)
print(results.shape)  # >>> (3000, 16, 5000)





There are several options for choosing the backend methods [https://joblib.readthedocs.io/en/latest/parallel.html#thread-based-parallelism-vs-process-based-parallelism].
Depending on the problem and how input data are used, their performance can be significantly different. In the above
example, the “threads” option gives the best performance. Note that we can’t use the above approaches for
parallel reading or writing data from/to a hdf file. There is a different way [https://docs.h5py.org/en/stable/mpi.html] of doing these.



	Users can also refer to how Algotom uses Joblib for different use-cases as shown here [https://github.com/algotom/algotom/blob/e4241fdce435ffeed512c657b25e07d9e9a1a45f/algotom/util/utility.py#L68],
here [https://github.com/algotom/algotom/blob/e4241fdce435ffeed512c657b25e07d9e9a1a45f/algotom/prep/calculation.py#L176],
or here [https://github.com/algotom/algotom/blob/e4241fdce435ffeed512c657b25e07d9e9a1a45f/algotom/util/correlation.py#L1155].











            

          

      

      

    

  

    
      
          
            
  
1.6. Alignment for a parallel-beam tomography system

Due to the parallelism of the penetrating X-rays, 2D projections can be divided into independent 1D projection rows.
Collecting 1D projections at a specific row angularly forms a sinogram, which is used to reconstruct a 2D slice of
an object (Fig. 1.6.1). To ensure the independence of 1D projections at each row, it is crucial to maintain
the rotation axis parallel to the imaging plane and perpendicular to each image row. This requirement is known as
tomography alignment. In a synchrotron-based tomography system, the high configurability in using different optics
magnifications and/or sample-detector distances often causes the rotation axis being misaligned with the imaging plane.
As the result, alignment adjustments are necessary for different tomography setups.


[image: ../../_images/fig_1_6_1.jpg]
Fig. 1.6.1 Schematic of parallel-beam X-ray tomography.



The misalignment of a tomography system is identified by measuring the tilt and roll angle of the rotation axis
relative to the imaging plane. This is achieved by scanning a point-like object, such as a sphere offset from the
rotation axis, through a full rotation and tracking the trajectory of its center of mass, as illustrated in Fig. 1.6.2.
A similar approach can be employed using a needle by tracking the top of it through a full rotation.


[image: ../../_images/fig_1_6_2.png]
Fig. 1.6.2 Overlay of projections of a sphere during a circular scan.



In a well-aligned system, the range of y-coordinates of points remains below 1 pixel, as depicted in Fig. 1.6.3.
If the system is misaligned, the y-coordinates of points will appear as an ellipse; where the roll angle corresponds to
the angle of the major axis, and the tilt is related to the ratio between the minor and major axes of the ellipse.


[image: ../../_images/fig_1_6_3.png]
Fig. 1.6.3 Demonstration of a well-aligned tomography system and a misaligned one



This section demonstrates how to use methods available in Algotom to calculate the tilt and roll angle of the rotation
axis from projections of a sphere scanned over the range of [0, 360] degrees.


	Load the raw data and the corresponding flat-field images:

import numpy as np
import scipy.ndimage as ndi
import matplotlib.pyplot as plt
import algotom.io.loadersaver as losa
import algotom.util.calibration as calib

proj_path = "/tomo/data/scan_00001/"
flat_path = "/tomo/data/scan_00002/"

# If inputs are tif files
proj_files = losa.find_file(proj_path + "/*.tif*")
flat_files = losa.find_file(flat_path + "/*.tif*")
proj_data = np.asarray([losa.load_image(file) for file in proj_files])
flat = np.mean(np.asarray([losa.load_image(file) for file in flat_files]),
               axis=0)

# # If inputs are hdf files
# hdf_key = "entry/data/data"  # Change to the correct key.
# proj_data = losa.load_hdf(proj_path, hdf_key)
# (depth, height, width) = proj_data.shape
# flat = np.mean(np.asarray(losa.load_hdf(flat_path, hdf_key)), axis=0)
flat[flat == 0.0] = np.mean(flat)

have_flat = True
fit_ellipse = True  # Use an ellipse-fit method
ratio = 1.0  # To adjust the threshold for binarization

crop_left = 10
crop_right = 10
crop_top = 1000
crop_bottom = 1000

figsize = (15, 7)
(depth, height, width) = proj_data.shape
left = crop_left
right = width - crop_right
top = crop_top
bottom = height - crop_bottom
width_cr = right - left
height_cr = bottom - top







	For each projection, multiple preprocessing steps are applied to segment the sphere and determine its center of mass.
These steps include flat-field correction, background removal, binarization, and the removal of non-spherical objects,
as follows:


[image: ../../_images/fig_1_6_4.jpg]
Fig. 1.6.4 Projection of the sphere




[image: ../../_images/fig_1_6_5.jpg]
Fig. 1.6.5 Binarized image




[image: ../../_images/fig_1_6_6.jpg]
Fig. 1.6.6 Segmented sphere



x_centers = []
y_centers = []
img_list = []
print("\n=============================================")
print("Extract the sphere and get its center-of-mass\n")

for i, img in enumerate(proj_data):
    # Crop image and perform flat-field correction
    if have_flat:
        mat = img[top: bottom, left:right] / flat[top: bottom, left:right]
    else:
        mat = img[top: bottom, left:right]
    # Denoise
    mat = ndi.gaussian_filter(mat, 2)
    # Normalize the background.
    # Optional, should be used if there's no flat-field.
    mat = calib.normalize_background_based_fft(mat, 5)
    threshold = calib.calculate_threshold(mat, bgr='bright')
    # Binarize the image
    mat_bin0 = calib.binarize_image(mat, threshold=ratio * threshold, bgr='bright')
    sphere_size = calib.get_dot_size(mat_bin0, size_opt="max")
    # Keep the sphere only
    mat_bin = calib.select_dot_based_size(mat_bin0, sphere_size)
    nmean = np.sum(mat_bin)
    if nmean == 0.0:
        print("\n************************************************************************")
        print("Adjust threshold or crop the FOV to remove objects larger than the sphere!")
        print("Current threshold used: {}".format(threshold))
        print("**************************************************************************")
        plt.figure(figsize=figsize)
        plt.imshow(mat_bin0, cmap="gray")
        plt.show()
        raise ValueError("No binary object selected!")
    (y_cen, x_cen) = ndi.center_of_mass(mat_bin)
    x_centers.append(x_cen)
    y_centers.append(height_cr - y_cen)
    img_list.append(mat)
    print("  ---> Done image: {}".format(i))
x = np.float32(x_centers)
y = np.float32(y_centers)
img_list = np.asarray(img_list)
img_overlay = np.min(img_list, axis=0)







	The coordinates of the center of mass of the sphere are used to calculate the till and roll either
using an ellipse-fit method or a linear-fit method.

# ==============================================================================

def fit_points_to_ellipse(x, y):
    if len(x) != len(y):
        raise ValueError("x and y must have the same length!!!")
    A = np.array([x ** 2, x * y, y ** 2, x, y, np.ones_like(x)]).T
    vh = np.linalg.svd(A, full_matrices=False)[-1]
    a0, b0, c0, d0, e0, f0 = vh.T[:, -1]
    denom = b0 ** 2 - 4 * a0 * c0
    msg = "Can't fit to an ellipse!!!"
    if denom == 0:
        raise ValueError(msg)
    xc = (2 * c0 * d0 - b0 * e0) / denom
    yc = (2 * a0 * e0 - b0 * d0) / denom
    roll_angle = np.rad2deg(
        np.arctan2(c0 - a0 - np.sqrt((a0 - c0) ** 2 + b0 ** 2), b0))
    if roll_angle > 90.0:
        roll_angle = - (180 - roll_angle)
    if roll_angle < -90.0:
        roll_angle = (180 + roll_angle)
    a_term = 2 * (a0 * e0 ** 2 + c0 * d0 ** 2 - b0 * d0 * e0 + denom * f0) * (
            a0 + c0 + np.sqrt((a0 - c0) ** 2 + b0 ** 2))
    if a_term < 0.0:
        raise ValueError(msg)
    a_major = -2 * np.sqrt(a_term) / denom
    b_term = 2 * (a0 * e0 ** 2 + c0 * d0 ** 2 - b0 * d0 * e0 + denom * f0) * (
            a0 + c0 - np.sqrt((a0 - c0) ** 2 + b0 ** 2))
    if b_term < 0.0:
        raise ValueError(msg)
    b_minor = -2 * np.sqrt(b_term) / denom
    if a_major < b_minor:
        a_major, b_minor = b_minor, a_major
        if roll_angle < 0.0:
            roll_angle = 90 + roll_angle
        else:
            roll_angle = -90 + roll_angle
    return roll_angle, a_major, b_minor, xc, yc

# ==============================================================================
# Calculate the tilt and roll using an ellipse-fit or a linear-fit method

if fit_ellipse is True:
    (a, b) = np.polyfit(x, y, 1)[:2]
    dist_list = np.abs(a * x - y + b) / np.sqrt(a ** 2 + 1)
    dist_list = ndi.gaussian_filter1d(dist_list, 2)
    if np.max(dist_list) < 1.0:
        fit_ellipse = False
        print("\nDistances of points to a fitted line is small, "
              "Use a linear-fit method instead!\n")

if fit_ellipse is True:
    try:
        result = fit_points_to_ellipse(x, y)
        roll_angle, major_axis, minor_axis, xc, yc = result
        tilt_angle = np.rad2deg(np.arctan2(minor_axis, major_axis))
    except ValueError:
        # If can't fit to an ellipse, using a linear-fit method instead
        fit_ellipse = False
        print("\nCan't fit points to an ellipse, using a linear-fit method instead!\n")

if fit_ellipse is False:
    (a, b) = np.polyfit(x, y, 1)[:2]
    dist_list = np.abs(a * x - y + b) / np.sqrt(a ** 2 + 1)
    appr_major = np.max(np.asarray([np.sqrt((x[i] - x[j]) ** 2 +
                                            (y[i] - y[j]) ** 2)
                                    for i in range(len(x))
                                    for j in range(i + 1, len(x))]))
    dist_list = ndi.gaussian_filter1d(dist_list, 2)
    appr_minor = 2.0 * np.max(dist_list)
    tilt_angle = np.rad2deg(np.arctan2(appr_minor, appr_major))
    roll_angle = np.rad2deg(np.arctan(a))

print("=============================================")
print("Roll angle: {} degree".format(roll_angle))
print("Tilt angle: {} degree".format(tilt_angle))
print("=============================================\n")







	Show the results:

# Show the results
plt.figure(1, figsize=figsize)
plt.imshow(img_overlay, cmap="gray", extent=(0, width_cr, 0, height_cr))
plt.tight_layout(rect=[0, 0, 1, 1])

plt.figure(0, figsize=figsize)
plt.plot(x, y, marker="o", color="blue")
plt.title(
    "Roll : {0:2.4f}; Tilt : {1:2.4f} (degree)".format(roll_angle, tilt_angle))
if fit_ellipse is True:
    # Use parametric form for plotting the ellipse
    angle = np.radians(roll_angle)
    theta = np.linspace(0, 2 * np.pi, 100)
    x_fit = (xc + 0.5 * major_axis * np.cos(theta) * np.cos(
        angle) - 0.5 * minor_axis * np.sin(theta) * np.sin(angle))
    y_fit = (yc + 0.5 * major_axis * np.cos(theta) * np.sin(
        angle) + 0.5 * minor_axis * np.sin(theta) * np.cos(angle))
    plt.plot(x_fit, y_fit, color="red")
else:
    plt.plot(x, a * x + b, color="red")
plt.xlabel("x")
plt.ylabel("y")
plt.tight_layout()
plt.show()






[image: ../../_images/fig_1_6_7.jpg]
Fig. 1.6.7 Overlay of projections of a sphere for checking.




[image: ../../_images/fig_1_6_8.jpg]
Fig. 1.6.8 Showing the result of finding the tilt and roll.







From the given results, we can adjust the rotation axis or the detector system accordingly. Note that the calculated
angles are based only on input images, so the sign of the angles does not reflect the true geometry of a
tomography system. Using information such as the direction of rotation when scanning spheres and/or camera orientation,
we can correctly identify the sign of these angles. After the adjustment, calculation results should be as follows:



[image: ../../_images/fig_1_6_9.jpg]
Fig. 1.6.9 Overlay of projections of a sphere after alignment.




[image: ../../_images/fig_1_6_10.jpg]
Fig. 1.6.10 Result of finding the tilt and roll after alignment.






The above routine performs very well in practice. However, if the projection images are of low quality due to blobs on
the scintillator or optics system, an additional cleaning step for image processing (using some functions in the
scikit-image [https://scikit-image.org/docs/stable/api/skimage.morphology.html] library) can be included as follows:


from skimage import measure, segmentation

def remove_non_round_objects(binary_image, ratio_threshold=0.9):
    """
    To clean binary image and remove non-round objects
    """
    binary_image = segmentation.clear_border(binary_image)
    binary_image = ndi.binary_fill_holes(binary_image)
    label_image = measure.label(binary_image)
    properties = measure.regionprops(label_image)
    mask = np.zeros_like(binary_image, dtype=bool)
    # Filter objects based on the axis ratio
    for prop in properties:
        if prop.major_axis_length > 0:
            axis_ratio = prop.minor_axis_length / prop.major_axis_length
            if axis_ratio > ratio_threshold:
                mask[label_image == prop.label] = True
    # Apply mask to keep only round objects
    filtered_image = np.logical_and(binary_image, mask)
    return filtered_image

# ...
# Binarize the image
mat_bin0 = calib.binarize_image(mat, threshold=ratio * threshold, bgr='bright')
# Clean the image
mat_bin0 = remove_non_round_objects(mat_bin0)
sphere_size = calib.get_dot_size(mat_bin0, size_opt="max")
# Keep the sphere only
# ...








The complete script and its commandline user interface (CLI) version are available
here [https://github.com/algotom/algotom/tree/master/examples/utilities/tomography_alignment].
If users prefer an interactive way of assessing tomographic alignment as shown below,
the ImageJ macros can be downloaded from
here [https://github.com/algotom/algotom/blob/master/examples/utilities/tomography_alignment/check_alignment_auto_segmentation.ijm].



[image: ../../_images/fig_1_6_11.jpg]
Fig. 1.6.11 Interactive approach for tomography alignment using ImageJ macro.










            

          

      

      

    

  

    
      
          
            
  
2. Features


2.1. Capabilities

Algotom is a lightweight package. The software is built on top of a few core Python
libraries to ensure its ease-of-installation. Methods distributed in Algotom have
been developed and tested at synchrotron beamlines where massive datasets are produced.
This factor drives the methods developed to be easy-to-use, robust, and practical.
Algotom can be used on a normal computer to process large tomographic data.
Some featuring methods in Algotom are as follows:


	Methods in a full data processing pipeline: reading-writing data,
pre-processing, tomographic reconstruction, and post-processing.





[image: ../_images/fig_2_1.png]




	Methods for processing grid scans (or tiled scans) with the offset rotation-axis
to multiply double the field-of-view (FOV) of a parallel-beam tomography system.

[image: ../_images/fig_2_2.jpg]


	Methods for processing helical scans (with/without the offset rotation-axis).

[image: ../_images/fig_2_3.jpg]


	Methods for determining the center-of-rotation (COR) and auto-stitching images
in half-acquisition scans (360-degree acquisition with the offset COR).


	Some practical methods developed and implemented for the package:
zinger removal, tilted sinogram generation, sinogram distortion correction,
beam hardening correction, DFI (direct Fourier inversion) reconstruction,
FBP reconstruction, and double-wedge filter for removing sample parts larger
than the FOV in a sinogram.

[image: ../_images/fig_2_4.jpg]


	Utility methods for customizing ring/stripe artifact removal methods and
parallelizing computational work.


	Calibration methods for determining pixel-size in helical scans.


	Methods for generating simulation data: phantom creation, sinogram calculation
based on the Fourier slice theorem, and artifact generation.

[image: ../_images/fig_2_5.png]


	Methods for phase-contrast imaging: phase unwrapping, speckle-based phase retrieval,
image correlation, and image alignment.

[image: ../_images/fig_2_6.png]


	Methods for downsampling, rescaling, and reslicing (+rotating, cropping)
3D reconstructed image without large memory usage.

[image: ../_images/fig_2_7.jpg]







2.2. Development principles


	While Algotom offers a comprehensive range of tools for tomographic data processing
covering raw-data reading, pre-processing, reconstruction, post-processing, and data
saving; its development primarily focuses on pre-processing techniques. This distinction
makes it a prominent feature among other tomographic software.


	To ensure that the software can work across platforms and is easy-to-install; dependencies
are minimized, and only well-maintained Python libraries [https://github.com/algotom/algotom/blob/master/requirements.txt]
are used.


	To achieve high-performance computing and leverage GPU utilization while ensuring ease of
understanding, usage, and software maintenance, Numba is used instead of Cupy or PyCuda.


	Methods are structured into modules and functions rather than classes to enhance usability,
debugging, and maintenance.


	Algotom is highly practical as it can run on computers with or without a GPU, multicore CPUs;
and accommodates both small and large memory capacities.










            

          

      

      

    

  

    
      
          
            
  
3. Installation

Algotom is installable across operating systems (Windows, Linux, Mac) and
works with Python >=3.7. It is a Python library not an app. Users have to
write Python codes to process their data. For beginners, a quick way to get started with Python
programming is to install Anaconda [https://www.anaconda.com/products/individual],
then follow instructions here [https://docs.anaconda.com/anaconda/user-guide/getting-started/].
There are many IDE software can be used to write and run Python codes e.g Spyder,
Pydev, Pycharm (Community) [https://www.jetbrains.com/pycharm/download], or Visual Studio Code. After installing these software, users
need to configure Python interpreter by pointing to the installed location of
Anaconda. Each software has instructions of how to do that. There is a list of standard
Python libraries shipped with Anaconda [https://docs.anaconda.com/anaconda/packages/pkg-docs/],
known as the base environment. To install a Python package out of the list, it’s a good
practice that users should create a separate environment from the base. This tutorial [https://www.freecodecamp.org/news/why-you-need-python-environments-and-how-to-manage-them-with-conda-85f155f4353c/]
gives an overview about Python environment. Instructions of how to create a new
environment and how to install new packages are here [https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html]
and here [https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-pkgs.html].
The following image shows the screenshot of how to use Anaconda Powershell Prompt to create
a new environment and install Algotom.

[image: ../_images/anaconda.png]
Note that the IDE software needs to be reconfigured to point to the new environment
as shown below.

[image: ../_images/pycharm.png]
If users don’t want to install Anaconda which is quite heavy due to the base
environment shipped with it, Miniconda [https://docs.conda.io/projects/conda/en/latest/user-guide/install/download.html]
is enough to customize Python environment.


3.1. Using conda

Install Miniconda as instructed above, then:

Open Linux terminal or Miniconda/Anaconda Powershell prompt and run the following commands:

If install to an existing environment:

conda install -c conda-forge algotom





or:

conda install -c algotom algotom





If install to a new environment:

conda create -n algotom python>=3.7
conda activate algotom
conda install -c conda-forge algotom








3.2. Using pip

Install Miniconda as instructed above, then

Open Linux terminal or Miniconda/Anaconda Powershell prompt and run the following commands:

If install to an existing environment:

pip install algotom





If install to a new environment:

conda create -n algotom python>=3.7
conda activate algotom
pip install algotom








3.3. From source

Clone Algotom [https://github.com/algotom/algotom] from Github repository:

git clone https://github.com/algotom/algotom.git algotom





Download and install Miniconda [https://docs.conda.io/en/latest/miniconda.html] software, then:

Open Linux terminal or Miniconda/Anaconda Powershell prompt and run the following commands:

conda create -n algotom python>=3.7
conda activate algotom
cd algotom
python setup.py install








3.4. Notes

To use GPU-enabled functions, users have to make sure that their computers have
a NVIDIA GPU and must install CUDA Toolkit [https://developer.nvidia.com/cuda-toolkit-archive].
Installing the latest version of CUDA Toolkit (or Python) is not recommended
as scientific software often takes time to update.

To compromise between ease-of-installation and performance, GPU-enabled reconstruction
functions in Algotom use Numba [https://numba.readthedocs.io/en/stable/cuda/index.html].
Users can use other reconstruction methods; which are optimized for speed such as
the gridding reconstruction method in Tomopy [https://tomopy.readthedocs.io/en/latest/api/tomopy.recon.algorithm.html]
or GPU-enabled methods in Astra Toolbox [https://www.astra-toolbox.com/docs/algs/index.html];
using Algotom’s wrappers. Making sure that Tomopy and Astra Toolbox are installed before use.
Referring to the websites of these packages to know how to install or acknowledge
if you use them.







            

          

      

      

    

  

    
      
          
            
  
4. Demonstrations



	4.1. Setting up a Python workspace

	4.2. Exploring raw data and making use of the input-output module
	4.2.1. Nxs/hdf files

	4.2.2. Tiff files

	4.2.3. Mrc files

	4.2.4. Other file formats





	4.3. Methods and tools for removing ring artifacts
	4.3.1. Improvements

	4.3.2. Tools for designing ring removal methods
	4.3.2.1. Back-and-forth sorting

	4.3.2.2. Separation of frequency components

	4.3.2.3. Polynomial fitting along an axis

	4.3.2.4. Wavelet decomposition and reconstruction

	4.3.2.5. Stripe interpolation

	4.3.2.6. Transformation between Cartesian and polar coordinate system

	4.3.2.7. Transformation between sinogram space and reconstruction space









	4.4. Comparison of ring removal methods on challenging sinograms
	4.4.1. Same sample-type and slice but different in shape

	4.4.2. Partial ring artifacts

	4.4.3. All types of ring artifacts

	4.4.4. Having valid stripes (not artifacts)

	4.4.5. For cone-beam tomography





	4.5. Complete workflow for processing tomographic data
	4.5.1. Assessing raw data

	4.5.2. Reconstructing several slices

	4.5.3. Finding the center of rotation

	4.5.4. Tweaking parameters of preprocessing methods

	4.5.5. Choosing a reconstruction method

	4.5.6. Performing full reconstruction

	4.5.7. Automating the workflow

	4.5.8. Downsampling, rescaling, and reslicing reconstructed volume

	4.5.9. Common mistakes and useful tips

	4.5.10. Data analysis









Examples of how to use the package are under the example folder of Algotom [https://github.com/algotom/algotom/tree/master/examples].
They cover most of use-cases which users can adapt to process their own data. Examples
of how to process speckle-based phase-contrast tomography is at here [https://github.com/algotom/algotom/tree/master/examples/speckle_based_tomography].

Users can use Algotom to re-process some old data collected at synchrotron facilities suffering from:



	Various types of ring artifacts [https://sarepy.readthedocs.io/toc/section2.html/].


	Cupping artifacts (also known as beam hardening artifacts) which are caused by using:
FFT-based reconstruction methods without proper padding; polychromatic X-ray sources;
or low-dynamic-range detectors to record high-dynamic-range projection-images.







There are tools and methods users can use to customize their own algorithms:



	Methods to transform images between the polar coordinate system and the Cartesian coordinate system.


	Methods to separate stripe artifacts.


	Methods to transform an image between the reconstruction space and the sinogram space.







Tomographic data for testing or developing methods can be downloaded from Zenodo.org [https://zenodo.org/search?page=1&size=20&q=%22tomographic%20data%22%20%26%20%22nghia%20t.%20vo%22&type=dataset#]
or TomoBank [https://tomobank.readthedocs.io/en/latest/]. Methods can also be tested using
simulation data as demonstrated here [https://github.com/algotom/algotom/blob/master/examples/example_08_generate_simulation_data.py].





            

          

      

      

    

  

    
      
          
            
  
4.1. Setting up a Python workspace

This section demonstrates step-by-step how to install Python
libraries, software, and tools; i.e. setting up a workspace for coding; on WinOS
to write Python codes and process tomographic data. There are many ways to set up
a Python workspace. However, we only show approaches which are easy-to-follow
and less troublesome for beginners.

1. Install Conda, a package manager, to install Python libraries


Download Miniconda from here [https://docs.conda.io/en/latest/miniconda.html]
and install it. After that, run Anaconda Powershell Prompt. This Powershell is
a command-line interface where users can run commands to install/manage Python
environments and packages.


[image: ../../_images/fig_4_1_1.png]



There is a list of commands in Conda, but we just need a few of them. The first
command is to create a new environment. An environment is a collection of Python
packages. We should create different environments for different usages (such as
to process tomographic data, write sphinx documentation, or develop a specific Python
software…) to avoid the conflict between Python libraries. The following
command will create an environment named myspace


conda create -n myspace








Then we must activate this environment before installing Python packages into it.


conda activate myspace








Name of the activated environment with be shown in the command line as below


[image: ../../_images/fig_4_1_2.png]



First things first, we install Python. Here we specify Python 3.10 (or 3.11), not the
latest one, as the Python ecosystem taking time to keep up.


conda install python=3.10








Then we install tomographic packages. A Python package can be distributed
through its own channel [https://anaconda.org/algotom],
the conda-forge [https://anaconda.org/conda-forge] channel (a huge collection of Python packages),
Pypi [https://pypi.org/project/algotom/], or users can download the source
codes [https://github.com/algotom/algotom] and install themselves using setup.py.
The order of priority should be: conda-forge, own channel, Pypi, then source codes.
Let install the Algotom package first using the instruction shown on its
documentation page.


conda install -c conda-forge algotom








Because Algotom relies on dependencies [https://github.com/algotom/algotom/blob/master/requirements.txt],
e.g. Numpy, Numba, Scipy, H5py,… they are also installed at the same time.
The Python environment and its packages are at C:/Users/user_ID/miniconda3/envs/myspace. Other conda commands
are often used:


	conda list : list packages installed in an activated environment.


	conda uninstall <package> : to uninstall a package.


	conda deactivate : to deactivate a current environment


	conda remove -n myspace –all : delete an environment.


	conda info -e : list environments created.







2. Install tomography-related, image-processing packages


There are a few of tomography packages which users should install along with
Algotom: Astra Toolbox [https://www.astra-toolbox.com/docs/install.html]
and Tomopy [https://tomopy.readthedocs.io/en/stable/install.html#installing-from-conda]


conda install -c astra-toolbox astra-toolbox=2.1.0

conda install -c conda-forge tomopy








For packages using Nvidia GPUs, making sure to install the CUDA toolkit [https://developer.nvidia.com/cuda-toolkit-archive]
as well. A popular visualization package, Matplotlib [https://matplotlib.org/stable/api/index], is
important to check or save results of a workflow.


conda install -c conda-forge matplotlib








If users need to calculate distortion coefficients of a lens-based detector
of a tomography system, using Discorpy [https://discorpy.readthedocs.io/en/latest/index.html]


conda install -c conda-forge discorpy











3. Install Pycharm for writing and debugging Python codes


Pycharm is one of the most favorite IDE software for Python programming. It has
many features which make it easy for coding such as syntax highlight,
auto-completion, auto-format, auto-suggestion, typo check, version control,
or change history. Pycharm (Community edition) [https://www.jetbrains.com/pycharm/download/]
is free software. After installing, users needs to configure the Python
interpreter (File->Settings->Project->Python interpreter-> Add ->Conda environment)
pointing to the created conda environment, C:/Users/user_ID/miniconda3/envs/myspace,
as demonstrated in section 1.1. It’s very easy to create a python file,
write codes, and run them as shown below.


[image: ../../_images/fig_4_1_3.png]






4. Write and run codes interactively using Jupyter Notebook (optional)


Using Python scripts is efficient and practical for processing multiple datasets.
However, if users want to work with data interactively to define a workflow,
Jupyter Notebook [https://jupyter-notebook.readthedocs.io/en/latest/] is
a good choice.

Install Jupyter in the activated environment


conda install -c conda-forge jupyter








Run the following command to enable the current environment in notebook
(only need for the first time setup). Note to change the name of the environment if
users use a different name.


ipython kernel install --user --name="myspace"








Then run Jupyter notebook by


jupyter notebook








Select the kernel as shown below


[image: ../../_images/fig_4_1_4.png]



It will create a new tab for inputting codes


[image: ../../_images/fig_4_1_5.png]



Note that the working folder (drive) of the notebook is where we run the command jupyter notebook from.
If users want to work at a different drive, e.g. D:, they must navigate to that drive before running the notebook.
(FYI, Press Ctrl+C to terminate a current running notebook from the Powershell Prompt)


cd D:
jupyter notebook











For who would like to use JupyterLab instead of Jupyter Notebook


Similar as above but for JupyterLab


conda install -c conda-forge jupyterlab








Run the following command only for the first time setup. Note to change the name of the environment if
users use a different name.


ipython kernel install --user --name="myspace"








Then run JupyterLab by


jupyter lab















            

          

      

      

    

  

    
      
          
            
  
4.2. Exploring raw data and making use of the input-output module

The following sections show how to handle different types of raw data before
they can be used for processing and reconstruction.


4.2.1. Nxs/hdf files

A nxs/hdf file can contain multiple datasets and data-types. Generally speaking,
it likes a folder with many sub-folders and files inside (i.e. hierarchical format).
To get data from a hdf file we need to know the path to the data. For example, we
want to know the path to projection-images of this tomographic data [https://doi.org/10.5281/zenodo.1443567].
The data have two files: a hdf file which contains images recorded by a detector and
a nxs file which contains the metadata of the experiment. The hdf file was
linked [https://docs.h5py.org/en/stable/high/group.html#external-links] to the nxs
file at the time they were created, so we only need to work with the nxs file.


	Using Hdfview [https://portal.hdfgroup.org/display/support/Download+HDFView]
(version 2.14 is easy to install) we can find the path to image data is “/entry1/tomo_entry/data/data”.
To display an image in that dataset: right click on “data” -> select “Open as” -> select “dim1”
for “Height”, select “dim2” for “Width” -> click “OK”.


[image: ../../_images/fig_4_2_1.png]



A metadata we need to know is rotation angles corresponding to the acquired images. The
path to this data is “/entry1/tomo_entry/data/rotation_angle”. There are three types
of images in a tomographic dataset: images with sample (projection), images without sample
(flat-field or white field), and images taken with a photon source off (dark-field). In the
data used for this demonstration, there’s a metadata in “/entry1/instrument/image_key/image_key”
used to indicate the type of an image: 0 <-> projection; 1 <-> flat-field;
2 <-> dark-field.

Different tomography facilities name above datasets differently. Some names rotation angles
as “theta_angle”. Some record flat-field and dark-field images as separate datasets (Fig. 1.4.1).
There has been an effort to unify these terms for synchrotron-based tomography community. This will be
very userful for end-users where they can use the same codes for processing data acquired at
different facilities.



	Other way of exploring nxs/hdf files is to use NeXpy [https://nexpy.github.io/nexpy/].
Users need to install NeXpy in an activated environment.


conda install -c conda-forge nexpy








and run from that environment


[image: ../../_images/fig_4_2_2.png]



NeXpy provides more options to explore data. Noting that image in NeXpy
is displayed with the origin at the bottom left. This is different to Hdfview (Fig. 1.4.2).


[image: ../../_images/fig_4_2_3.png]



Other python-based GUI software can be used are: Broh5 [https://github.com/algotom/broh5] or
Vitables [https://github.com/uvemas/ViTables].



	Users also can use functions in the input-output module of Algotom to explore data.
For example, to display the hierarchical structure of a hdf file:


import algotom.io.loadersaver as losa

file_path = "E:/Tomo_data/68067.nxs"
losa.get_hdf_tree(file_path)





Output:
entry1
    │
    ├── before_scan
    │   │
    │   ├── cam1
    │   │   │
    │   │   ├── cam1_roll (1,)
    │   │   ├── cam1_x (1,)
    │   │   └── cam1_z (1,)
    │   ├── dcm1_cap_1
    │   │   └── dcm1_cap_1 (1,)








To find datasets having the pattern of “data” in their paths:


keys, shapes, types = losa.find_hdf_key(file_path, "data")
for i in range(len(keys)):
    print(i," Key: {0} | Shape: {1} | Type: {2} ".format(keys[i], shapes[i], types[i]))





Output:
0  Key: entry1/flyScanDetector/data | Shape: (1861, 2160, 2560) | Type: uint16
1  Key: entry1/instrument/flyScanDetector/data | Shape: (1861, 2160, 2560) | Type: uint16
2  Key: entry1/tomo_entry/data | Shape: None | Type: None
3  Key: entry1/tomo_entry/control/data | Shape: (1,) | Type: float64
4  Key: entry1/tomo_entry/data/data | Shape: (1861, 2160, 2560) | Type: uint16
5  Key: entry1/tomo_entry/data/rotation_angle | Shape: (1861,) | Type: float64
6  Key: entry1/tomo_entry/instrument/detector/data | Shape: (1861, 2160, 2560) | Type: uint16








After knowing the path (key) to a dataset containing images we can extract an image and save it as tif. A
convenient feature of methods for saving data in Algotom is that if the output folder doesn’t exist
it will be created.


image_data = losa.load_hdf(file_path, "entry1/tomo_entry/data/data")
losa.save_image("E:/output/image_00100.tif", image_data[100])








We also can extract multiple images from a hdf file and save them to tiff using a single command


import algotom.io.converter as conv

# Extract images with the indices of (start, stop, step) along axis 0
conv.extract_tif_from_hdf(file_path, "E:/output/some_proj/", "entry1/tomo_entry/data/data",
                          index=(0, -1, 100), axis=0, crop=(0, 0, 0, 0), prefix='proj')















4.2.2. Tiff files

In some tomography systems, raw data are saved as tiff images. As shown in section 2,
processing methods for tomographic data work either on projection space or sinogram space, or on both.
Because of that, we have to switch between spaces, i.e. slicing 3D data along different axis. This
cannot be done efficiently if using the tiff format. In such case, users can convert tiff images to
the hdf format first before processing them with options to add metadata.


input_folder = "E:/raw_tif/" # Folder with tiff files inside. Note that the names of the
                             # tiff files must be corresponding to the increasing order of angles
output_file = "E:/convert_hdf/tomo_data.hdf"
num_angle = len(losa.file_file(input_folder + "/*tif*"))
angles = np.linspace(0.0, 180.0, num_angle)
conv.convert_tif_to_hdf(input_folder, output_file, key_path='entry/data',
                        crop=(0, 0, 0, 0), pattern=None,
                        options={"entry/angles": angles, "entry/energy_keV": 20})








In some cases, we may want to load a stack of tiff images and average them such as flat-field images or
dark-field images. This can be done in different ways


input_folder = "E:/flat_field/"
# 1st way
flat_field = np.mean(losa.get_tif_stack(input_folder, idx=None, crop=(0, 0, 0, 0)), axis=0)
# 2nd way. The method was written for speckle-tracking tomography but can be used here
flat_field = losa.get_image_stack(None, input_folder, average=True, crop=(0, 0, 0, 0))
# 3rd way
list_file = losa.find_file(input_folder + "/*tif*")
flat_field = np.mean(np.asarray([losa.load_image(file) for file in list_file]), axis=0)











4.2.3. Mrc files

Mrc format [https://www.ccpem.ac.uk/mrc_format/mrc_format.php] is a standard format in electron tomography.
To load this data, users need to install the Mrcfile library [https://pypi.org/project/mrcfile/]


conda install -c conda-forge mrcfile








and check the documentation page [https://mrcfile.readthedocs.io/en/stable/] to know how to extract
data and metadata from this format. For large files, we use memory-mapped mode to read only part
of data needed as shown below.


import mrcfile
import algotom.io.loadersaver as losa

mrc = mrcfile.mmap("E:/etomo/tomo.mrc", mode='r+')
output_base = "E:/output"
(depth, height, width) = mrc.data.shape
for i in range(0, depth, 10):
    name = "0000" + str(i)
    losa.save_image(output_base + "/img_" + name[-5:] + ".tif", mrc.data[i])








Methods in Algotom assume that the rotation axis of a tomographic data is parallel to the columns of
an image. Users may need to rotate images loaded from a mrc file because the rotation axis is often
parallel to image-rows instead.




4.2.4. Other file formats

For other file formats such as xrm, txrm, fits, … users can use the DXchange library [https://github.com/data-exchange/dxchange]
to load data


conda install -c conda-forge dxchange








and refer the documentation page [http://dxchange.readthedocs.io/] for more details.







            

          

      

      

    

  

    
      
          
            
  
4.3. Methods and tools for removing ring artifacts

Algotom provides improved implementations of many methods for removing ring artifacts;
which were published previously by the same author in Sarepy [https://sarepy.readthedocs.io/];
to be easier to use and customize. More than that, there are many tools for users to
design their own removal methods.

Note that ring artifacts in a reconstructed image are corresponding to stripe artifacts in
the sinogram image or the polar-transformed image. Most of ring removal methods are actually
stripe removal methods under the surface.



[image: ../../_images/fig_4_3_1.jpg]
Fig. 4.3.1 Ring removal methods working on sinogram image, known as pre-processing methods.
(a) Sinogram before correction. (b) Sinogram after correction. (c) Reconstructed
image from sinogram (a). (d) Reconstructed image from sinogram (b).




[image: ../../_images/fig_4_3_2.jpg]
Fig. 4.3.2 Ring removal methods working on polar-transformed image, known as post-processing methods.
(a) Reconstructed image before correction. (b) Polar transformation of image (a). (d) Stripe
artifacts removed from image (b). (c) Cartesian transformation of image (d).







4.3.1. Improvements


	Users can select different smoothing filters available in Scipy [https://docs.scipy.org/doc/scipy/reference/ndimage.html]
or in Algotom utility module for removing stripes by passing keyword arguments as dict type:

import algotom.io.loadersaver as losa
import algotom.prep.removal as rem
sinogram = losa.load_image("D:/data/sinogram.tif")
# Sorting-based methods use the median filter by default, users can select
# another filter as below.
sinogram1 = rem.remove_stripe_based_sorting(sinogram, option={"method": "gaussian_filter",
                                                              "para1": (1, 21)})







	The sorting-based technique [https://doi.org/10.1364/OE.26.028396], which is simple but effective to remove
partial stripes and avoid void-center artifacts, is an option for other ring removal methods.

sinogram2 = rem.remove_stripe_based_filtering(sinogram, 3, sort=True)
sinogram3 = rem.remove_stripe_based_regularization(sinogram, 0.005, sort=True)












4.3.2. Tools for designing ring removal methods

The cleaning capability with least side-effect of a ring removal method relies
on a smoothing filter or an interpolation technique which the method employs.
Other supporting techniques for revealing stripe artifacts such as sorting,
filtering, fitting, wavelet decomposition, polar transformation, or forward projection
are commonly used. Algotom provides these supporting tools for users to incorporate
with their own smoothing filters or interpolation techniques.


4.3.2.1. Back-and-forth sorting


The technique (algorithm 3 in [R19]) couples an image with an index array
for sorting the image backward and forward along an axis. Users can combine the
sorting forward [https://algotom.readthedocs.io/en/latest/toc/api/algotom.util.utility.html#algotom.util.utility.sort_forward]
method, a customized filter, and the sorting backward [https://algotom.readthedocs.io/en/latest/toc/api/algotom.util.utility.html#algotom.util.utility.sort_backward]
method as follows


[image: ../../_images/fig_4_3_3.jpg]
Fig. 4.3.3 Demonstration of the forward sorting.



import algotom.util.utility as util
import scipy.ndimage as ndi

# Sort forward
sino_sort, mat_index = util.sort_forward(sinogram, axis=0)
# Use a customized smoothing filter here
sino_sort = apply_customized_filter(sino_sort, parameters)
# Sort backward
sino_corr = util.sort_backward(sino_sort, mat_index, axis=0)






[image: ../../_images/fig_4_3_4.jpg]
Fig. 4.3.4 Demonstration of the backward sorting.









4.3.2.2. Separation of frequency components


The technique [https://algotom.readthedocs.io/en/latest/toc/api/algotom.util.utility.html#algotom.util.utility.separate_frequency_component]
can help to reveal stripe artifacts by separating frequency components of each image-column using a
1D window available in Scipy [https://docs.scipy.org/doc/scipy/reference/signal.windows.html]. Example
of how to use the technique:

# Separate a sinogram image
sino_smooth, sino_sharp = util.separate_frequency_component(sinogram, axis=0,
                                                            window={"name": "gaussian",
                                                                    "sigma": 5})
# Use a customized smoothing filter here
sino_smooth_filtered = apply_customized_filter(sino_smooth, parameters)
# Add back
sino_corr = sino_smooth_filtered + sino_sharp






[image: ../../_images/fig_4_3_5.jpg]
Fig. 4.3.5 Demonstration of how to separate frequency components of a sinogram along each column.









4.3.2.3. Polynomial fitting along an axis


The technique [https://algotom.readthedocs.io/en/latest/toc/api/algotom.util.utility.html#algotom.util.utility.generate_fitted_image]
can help to reveal low contrast stripes easily by applying a polynomial fit along each image-column.

sino_fit = util.generate_fitted_image(sinogram, 3, axis=0, num_chunk=1)
# Use a customized smoothing filter here
sino_smooth = apply_customized_filter(sino_fit, parameters)
# Get back the sinogram
sino_corr = (sinogram / sino_fit) * sino_smooth






[image: ../../_images/fig_4_3_6.jpg]
Fig. 4.3.6 Demonstration of how to apply a polynomial fitting along each column of a sinogram.









4.3.2.4. Wavelet decomposition and reconstruction


Functions for wavelet decomposition [https://algotom.readthedocs.io/en/latest/toc/api/algotom.util.utility.html#algotom.util.utility.apply_wavelet_decomposition],
wavelet reconstruction [https://algotom.readthedocs.io/en/latest/toc/api/algotom.util.utility.html#algotom.util.utility.apply_wavelet_reconstruction],
and applying a smoothing filter to specific levels [https://algotom.readthedocs.io/en/latest/toc/api/algotom.util.utility.html#algotom.util.utility.apply_filter_to_wavelet_component]
of directional image-details [https://pywavelets.readthedocs.io/en/latest/] are provided.
The following codes decompose a sinogram to level 2. As can be seen in Fig. 4.3.7
stripe artifacts are visible in vertical details of results. One can apply a smoothing filter
to remove these stripes then apply a wavelet reconstruction to get the resulting sinogram.

outputs = util.apply_wavelet_decomposition(sinogram, "db9", level=2)
[mat_2, (cH_level_2, cV_level_2, cD_level_2), (cH_level_1, cV_level_1, cD_level_1)] = outputs
# Save results of vertical details
# losa.save_image("D:/output/cV_level_2.tif", cV_level_2)
# losa.save_image("D:/output/cV_level_1.tif", cV_level_1)

# Apply the gaussian filter to each level of vertical details
outputs = util.apply_filter_to_wavelet_component(outputs, level=None, order=1,
                                                 method="gaussian_filter", para=[(1, 11)])
# Optional: remove stripes on the approximation image (mat_2 above)
outputs[0] = rem.remove_stripe_based_sorting(outputs[0], 11)
# Apply the wavelet reconstruction
sino_corr = util.apply_wavelet_reconstruction(outputs, "db9")






[image: ../../_images/fig_4_3_7.jpg]
Fig. 4.3.7 Demonstration of the wavelet decomposition.









4.3.2.5. Stripe interpolation


Users can design a customized stripe-detection method, then pass the result (as a 1D binary array) to the
following function [https://algotom.readthedocs.io/en/latest/toc/api/algotom.util.utility.html#algotom.util.utility.interpolate_inside_stripe]
to remove stripes by interpolation.

sino_corr = util.interpolate_inside_stripe(sinogram, list_mask, kind="linear")











4.3.2.6. Transformation between Cartesian and polar coordinate system


This is a well-known technique to remove ring artifacts from a reconstructed image
as shown in Fig. 4.3.2.

img_rec = losa.load_image("D:/data/reconstructed_image.tif")
# Transform the reconstructed image into polar coordinates
img_polar = util.transform_slice_forward(img_rec)

# Use a customized smoothing filter here
img_corr = apply_customized_filter(img_polar, parameters)

# Transform the resulting image into Cartesian coordinates
img_carte = util.transform_slice_backward(img_corr)











4.3.2.7. Transformation between sinogram space and reconstruction space


Algotom provides a re-projection method [https://algotom.readthedocs.io/en/latest/toc/api/algotom.util.simulation.html#algotom.util.simulation.make_sinogram]
to convert a reconstructed image to the sinogram image. As using directly the
Fourier slice theorem it’s fast compared to ray-tracing-based methods or
image-rotation-based methods.

import numpy as np
import algotom.util.simulation as sim
import algotom.rec.reconstruction as rec

rec_img = losa.load_image("D:/data/reconstructed_image.tif")
(height, width) = rec_img.shape
angles = np.deg2rad(np.linspace(0.0, 180.0, height))

# Re-project the reconstructed image
sino_calc = sim.make_sinogram(rec_img, angles=angles)

# Use a customized stripe-removal method
sino_corr = apply_customized_filter(sino_calc, parameters)

# Reconstruct
img_rec = rec.dfi_reconstruction(sino_corr, (width - 1) / 2, apply_log=False)






[image: ../../_images/fig_4_3_8.jpg]
Fig. 4.3.8 Demonstration of how to re-project a reconstructed image.














            

          

      

      

    

  

    
      
          
            
  
4.4. Comparison of ring removal methods on challenging sinograms

Ring artifact is the most pervasive type of artifacts in tomographic imaging. Numerous approaches for removing this
artifact have been published over the years. In [R19], the author proposed many algorithms and a combination
of them (algorithm 6, 5, 4, and 3) to remove most types of ring artifacts. This combined method,
called algo-6543 for short, is easy-to-use and very effective. It has been implemented in Python, Matlab,
and available in several tomographic Python packages. To know more about causes of ring artifacts, types of ring
artifacts, and details of removal algorithms out of the original paper; users can check out the documentation page
here [https://sarepy.readthedocs.io/]. This section demonstrates the performance of the
algo-6543 method [https://algotom.readthedocs.io/en/latest/toc/api/algotom.prep.removal.html#algotom.prep.removal.remove_all_stripe]
and sorting-based methods [https://algotom.readthedocs.io/en/latest/toc/api/algotom.prep.removal.html#algotom.prep.removal.remove_stripe_based_sorting]
in comparison with other methods on challenging sinograms. These data are available here [https://github.com/nghia-vo/sarepy/tree/master/data]
and free to use. They are very useful for testing ring removal methods.


4.4.1. Same sample-type and slice but different in shape

The following images show sinograms and reconstructed images of two limestone rocks with different shapes before and
after ring removal methods are applied.


	Sinograms at the same detector-row:


[image: ../../_images/img_4_4_1.jpg]





	Reconstructed images without using a ring removal method:


[image: ../../_images/img_4_4_2.jpg]





	If using the combination of methods [https://algotom.readthedocs.io/en/latest/toc/api/algotom.prep.removal.html#algotom.prep.removal.remove_all_stripe]:


import algotom.io.loadersaver as losa
import algotom.prep.calculation as calc
import algotom.prep.removal as rem
import algotom.rec.reconstruction as rec

input_base = "E:/data/"
output_base = "E:/rings_removed/remove_all_stripe/"

sinogram1 = losa.load_image(input_base + "/same_type_same_slice_different_shape_sample1.tif")
sinogram2 = losa.load_image(input_base + "/same_type_same_slice_different_shape_sample2.tif")
center1 = calc.find_center_vo(sinogram1)
center2 = calc.find_center_vo(sinogram2)

sinogram1 = rem.remove_all_stripe(sinogram1, snr=3.0, la_size=51, sm_size=21)
sinogram2 = rem.remove_all_stripe(sinogram2, snr=3.0, la_size=51, sm_size=21)

img_rec1 = rec.dfi_reconstruction(sinogram1, center1)
img_rec2 = rec.dfi_reconstruction(sinogram2, center2)
losa.save_image(output_base + "/rec_sample1.tif", img_rec1)
losa.save_image(output_base + "/rec_sample2.tif", img_rec2)
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	If using the wavelet-fft-based method [https://algotom.readthedocs.io/en/latest/toc/api/algotom.prep.removal.html#algotom.prep.removal.remove_stripe_based_wavelet_fft]:


sinogram1 = rem.remove_stripe_based_wavelet_fft(sinogram1, level=5, size=2, wavelet_name="db10")
sinogram2 = rem.remove_stripe_based_wavelet_fft(sinogram2, level=5, size=2, wavelet_name="db10")
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	If using the fft-based method [https://algotom.readthedocs.io/en/latest/toc/api/algotom.prep.removal.html#algotom.prep.removal.remove_stripe_based_fft]:


sinogram1 = rem.remove_stripe_based_fft(sinogram1, u=20, n=10, v=0)
sinogram2 = rem.remove_stripe_based_fft(sinogram2, u=20, n=10, v=0)
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	If using the normalization-based method [https://algotom.readthedocs.io/en/latest/toc/api/algotom.prep.removal.html#algotom.prep.removal.remove_stripe_based_normalization]:


sinogram1 = rem.remove_stripe_based_normalization(sinogram1, 11)
sinogram2 = rem.remove_stripe_based_normalization(sinogram2, 11)
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	If using the regularization-based method [https://algotom.readthedocs.io/en/latest/toc/api/algotom.prep.removal.html#algotom.prep.removal.remove_stripe_based_regularization]:


sinogram1 = rem.remove_stripe_based_regularization(sinogram1, alpha=0.0005, apply_log=True)
sinogram2 = rem.remove_stripe_based_regularization(sinogram2, alpha=0.0005, apply_log=True)
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As demonstrated, using the algo-6543 method gives the best results with least side-effect artifacts.
For other methods, it’s impossible to use the same parameters for different samples or slices.








4.4.2. Partial ring artifacts

The following images show sinograms and reconstructed images of two samples in slab shapes
which cause partial ring artifacts.


	Sinograms:


[image: ../../_images/img_4_4_8.jpg]





	Reconstructed images without using a ring removal method:


[image: ../../_images/img_4_4_9.jpg]





	If using the sorting-based method [https://algotom.readthedocs.io/en/latest/toc/api/algotom.prep.removal.html#algotom.prep.removal.remove_stripe_based_sorting]
(algorithm 3 in [R19]):


import algotom.io.loadersaver as losa
import algotom.prep.calculation as calc
import algotom.prep.removal as rem
import algotom.rec.reconstruction as rec

input_base = "E:/data/"
output_base = "E:/rings_removed/sorting_based_method/"

sinogram1 = losa.load_image(input_base + "/sinogram_partial_stripe.tif")
sinogram2 = losa.load_image(input_base + "/large_partial_rings.tif")
center1 = calc.find_center_vo(sinogram1)
center2 = calc.find_center_vo(sinogram2)
print("center1 = ", center1)
print("center2 = ", center2)

sinogram1 = rem.remove_stripe_based_sorting(sinogram1, 51)
sinogram2 = rem.remove_stripe_based_sorting(sinogram2, 51)

img_rec1 = rec.dfi_reconstruction(sinogram1, center1)
img_rec2 = rec.dfi_reconstruction(sinogram2, center2)
losa.save_image(output_base + "/rec_sample1.tif", img_rec1)
losa.save_image(output_base + "/rec_sample2.tif", img_rec2)
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	If using the wavelet-fft-based method [https://algotom.readthedocs.io/en/latest/toc/api/algotom.prep.removal.html#algotom.prep.removal.remove_stripe_based_wavelet_fft]:


sinogram1 = rem.remove_stripe_based_wavelet_fft(sinogram1, level=5, size=2, wavelet_name="db10")
sinogram2 = rem.remove_stripe_based_wavelet_fft(sinogram2, level=5, size=2, wavelet_name="db10")





[image: ../../_images/img_4_4_11.jpg]
As can be seen, the original wavelet-fft-based method can’t remove partial rings effectively.
In Algotom, this method is improved by combining with the sorting method, which is the key part
of algorithm 3 in [R19]. This helps to avoid void-center artifacts when strong parameters
of the wavelet-fft-based method are used as demonstrated below


sinogram1a = rem.remove_stripe_based_wavelet_fft(sinogram1, level=6, size=31, wavelet_name="db10", sort=True)
sinogram1b = rem.remove_stripe_based_wavelet_fft(sinogram1, level=6, size=31, wavelet_name="db10", sort=False)
sinogram2 = rem.remove_stripe_based_wavelet_fft(sinogram2, level=5, size=5, wavelet_name="db10", sort=True)
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	If using the normalization-based method [https://algotom.readthedocs.io/en/latest/toc/api/algotom.prep.removal.html#algotom.prep.removal.remove_stripe_based_normalization]:


sinogram1 = rem.remove_stripe_based_normalization(sinogram1, sigma=17, num_chunk=1)
sinogram2 = rem.remove_stripe_based_normalization(sinogram2, sigma=31, num_chunk=1)
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As shown above, the normalization-based method is not suitable for removing partial rings. However
it can be improved by dividing a sinogram into many chunks of rows and combining with the sorting
method.


sinogram1a = rem.remove_stripe_based_normalization(sinogram1, sigma=17, num_chunk=30, sort=True)
sinogram1b = rem.remove_stripe_based_normalization(sinogram1, sigma=17, num_chunk=30, sort=False)
sinogram2 = rem.remove_stripe_based_normalization(sinogram2, sigma=31, num_chunk=30, sort=True)
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The above sub-section is to demonstrate the effectiveness of the sorting-based method in removing partial ring
artifacts and improving other methods in avoiding void-center artifacts. Results of using the fft-based method and
regularization-based method are not demonstrated here because their performance is similar to the wavelet-fft-based
method and the normalization-based method.








4.4.3. All types of ring artifacts

The following images show sinograms and reconstructed images of two limestone rocks with
different shapes having all types of stripe/ring artifacts [https://sarepy.readthedocs.io/toc/section2.html]
in one slice.


	Sinograms:
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	Reconstructed images without using a ring removal method:
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	If using the combination of methods [https://algotom.readthedocs.io/en/latest/toc/api/algotom.prep.removal.html#algotom.prep.removal.remove_all_stripe]:


import algotom.io.loadersaver as losa
import algotom.prep.calculation as calc
import algotom.prep.removal as rem
import algotom.rec.reconstruction as rec

input_base = "E:/data/"
output_base = "E:/rings_removed/remove_all_stripe/"

sinogram1 = losa.load_image(input_base + "/all_stripe_types_sample1.tif")
sinogram2 = losa.load_image(input_base + "/all_stripe_types_sample2.tif")

center1 = calc.find_center_vo(sinogram1)
center2 = calc.find_center_vo(sinogram2)

print("center1 = ", center1)
print("center2 = ", center2)

sinogram1 = rem.remove_all_stripe(sinogram1, snr=2.0, la_size=81, sm_size=31)
sinogram2 = rem.remove_all_stripe(sinogram2, snr=3.0, la_size=81, sm_size=31)

img_rec1 = rec.dfi_reconstruction(sinogram1, center1)
img_rec2 = rec.dfi_reconstruction(sinogram2, center2)
losa.save_image(output_base + "/rec_sample1.tif", img_rec1)
losa.save_image(output_base + "/rec_sample2.tif", img_rec2)
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As can be seen, there are still low-contrast ring artifacts which are difficult to detect and remove. These
low-contrast rings are caused by the halo effect [https://sarepy.readthedocs.io/toc/section2.html#id5]
around blob areas on a scintillator. There is a strong removal method [https://algotom.readthedocs.io/en/latest/toc/api/algotom.prep.removal.html#algotom.prep.removal.remove_stripe_based_fitting]
proposed in [R19] and its improvement can help to deal with such ring artifacts as below.


sinogram1 = rem.remove_all_stripe(sinogram1, snr=2.0, la_size=81, sm_size=31)
sinogram2 = rem.remove_all_stripe(sinogram2, snr=3.0, la_size=81, sm_size=31)
sinogram1 = rem.remove_stripe_based_fitting(sinogram1, order=1, sigma=10, num_chunk=9, sort=True)
sinogram2 = rem.remove_stripe_based_fitting(sinogram2, order=1, sigma=10, num_chunk=9, sort=True)
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	If using the wavelet-fft-based method [https://algotom.readthedocs.io/en/latest/toc/api/algotom.prep.removal.html#algotom.prep.removal.remove_stripe_based_wavelet_fft]
with the sorting-based method:


sinogram1 = rem.remove_stripe_based_wavelet_fft(sinogram1, level=6, size=5, wavelet_name="db10", sort=True)
sinogram2 = rem.remove_stripe_based_wavelet_fft(sinogram2, level=6, size=5, wavelet_name="db10", sort=True)
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	If using the regularization-based method [https://algotom.readthedocs.io/en/latest/toc/api/algotom.prep.removal.html#algotom.prep.removal.remove_stripe_based_regularization]
with the sorting-based method:


sinogram1 = rem.remove_stripe_based_regularization(sinogram1, alpha=0.001, num_chunk=15, sort=True)
sinogram2 = rem.remove_stripe_based_regularization(sinogram2, alpha=0.001, num_chunk=15, sort=True)
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4.4.4. Having valid stripes (not artifacts)

For samples containing round-shape objects (tubes, spheres), they can produce sinograms having valid stripes. This
is a problem for fft-based methods or normalization-based methods, but not for sorting-based methods.


[image: ../../_images/img_4_4_21.jpg]




	Results of using the combined method and the sorting-based method as below. Note that the remaining ring artifacts
are insignificant. Although visible, they have nearly the same SNR (signal-to-noise ratio) as nearby background.


import algotom.io.loadersaver as losa
import algotom.prep.calculation as calc
import algotom.prep.removal as rem
import algotom.rec.reconstruction as rec

input_base = "E:/data/"
output_base = "E:/valid_stripes/rings_removed/"

sinogram = losa.load_image(input_base + "/valid_stripes.tif")
center = calc.find_center_vo(sinogram)
print("center =", center)

sinogram1 = rem.remove_all_stripe(sinogram, snr=3.0, la_size=31, sm_size=21)
sinogram2 = rem.remove_stripe_based_sorting(sinogram, 21)

img_rec1 = rec.dfi_reconstruction(sinogram1, center)
img_rec2 = rec.dfi_reconstruction(sinogram2, center)
losa.save_image(output_base + "/rec_img1.tif", img_rec1)
losa.save_image(output_base + "/rec_img2.tif", img_rec2)
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	Results of using other methods are shown below. Although reduced strength, they still produce lots of
side-effect artifacts for such a pretty clean sinogram.


sinogram1 = rem.remove_stripe_based_wavelet_fft(sinogram, level=4, size=1)
sinogram2 = rem.remove_stripe_based_fft(sinogram, u=40, n=8, v=0)
sinogram3 = rem.remove_stripe_based_normalization(sinogram, sigma=11)
sinogram4 = rem.remove_stripe_based_regularization(sinogram, alpha=0.005)
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4.4.5. For cone-beam tomography

Post-processing ring-removal methods [https://sarepy.readthedocs.io/toc/section3.html#postprocessing-methods] are often
used for cone-beam tomography because reconstruction can’t be done sinogram-by-sinogram. However, they can cause
void-center artifacts, which may not be visible in horizontal slices but clearly visible along vertical
slices. More than that, these methods can’t remove side effects of unresponsive-stripe artifacts [https://sarepy.readthedocs.io/toc/section2.html#id3]
and fluctuating-stripe artifacts [https://sarepy.readthedocs.io/toc/section2.html#id4] which not only give rise to
ring artifacts but also streak artifacts in a reconstructed image.
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Certainly, we can apply pre-processing ring-removal methods along the sinogram direction. The only downside is that
we have to store intermediate results for switching between the projection space and the sinogram space.
It is common that commercial tomography systems output flat-field-corrected projection-images as 16-bit tif format (grayscale
in the range of 0-65535). The following shows how to apply pre-processing methods along the sinogram direction
step-by-step:



	First of all, we convert tiffs to hdf file-format for fast slicing 3D data.

import timeit
import numpy as np
import algotom.io.converter as conv
import algotom.io.loadersaver as losa

input_base = "E:/cone_beam/rawdata/tif_projections/"
output_file = "E:/tmp/projections.hdf"

t0 = timeit.default_timer()
list_files = losa.find_file(input_base + "/*.tif*")
depth = len(list_files)
(height, width) = np.shape(losa.load_image(list_files[0]))
conv.convert_tif_to_hdf(input_base, output_file, key_path='entry/data', crop=(0, 0, 0, 0))
t1 = timeit.default_timer()
print("Done!!!. Total time cost: {}".format(t1 - t0))







	Then load the converted data and apply pre-processing methods. Note about the change of data shape
in each step.

import timeit
import multiprocessing as mp
from joblib import Parallel, delayed
import numpy as np
import algotom.io.loadersaver as losa
import algotom.prep.removal as rem
import algotom.prep.correction as corr

input_file = "E:/tmp/projections.hdf"
output_file = "E:/tmp/tmp/projections_preprocessed.hdf"

data = losa.load_hdf(input_file, key_path='entry/data')
(depth, height, width) = data.shape

# Note that the shape of output data is (height, depth, width)
# for faster writing to hdf file.
output = losa.open_hdf_stream(output_file, (height, depth, width), data_type="float32")

t0 = timeit.default_timer()
# For parallel processing
ncore = mp.cpu_count()
chunk_size = np.clip(ncore - 1, 1, height - 1)
last_chunk = height - chunk_size * (height // chunk_size)
for i in np.arange(0, height - last_chunk, chunk_size):
    sinograms = np.float32(data[:, i:i + chunk_size, :])
    # Note about the change of the shape of output_tmp (which is a list of processed sinogram)
    output_tmp = Parallel(n_jobs=ncore, prefer="threads")(delayed(rem.remove_all_stripe)(sinograms[:, j, :], 3.0, 51, 21) for j in range(chunk_size))

    # Apply beam hardening correction if need to
    # output_tmp = np.asarray(output_tmp)
    # output_tmp = Parallel(n_jobs=ncore, prefer="threads")(
    #     delayed(corr.beam_hardening_correction)(output_tmp[j], 40, 2.0, False) for j in range(chunk_size))

    output[i:i + chunk_size] = np.asarray(output_tmp, dtype=np.float32)
    t1 = timeit.default_timer()
    print("Done sinograms: {0}-{1}. Time {2}".format(i, i + chunk_size, t1 - t0))

if last_chunk != 0:
    sinograms = np.float32(data[:, height - last_chunk:height, :])
    output_tmp = Parallel(n_jobs=ncore, prefer="threads")(delayed(rem.remove_all_stripe)(sinograms[:, j, :], 3.0, 51, 21) for j in range(last_chunk))

    # Apply beam hardening correction if need to
    # output_tmp = np.asarray(output_tmp)
    # output_tmp = Parallel(n_jobs=ncore, prefer="threads")(
    #     delayed(corr.beam_hardening_correction)(output_tmp[j], 40, 2.0, False) for j in range(last_chunk))

    output[height - last_chunk:height] = np.asarray(output_tmp, dtype=np.float32)
    t1 = timeit.default_timer()
    print("Done sinograms: {0}-{1}. Time {2}".format(height - last_chunk, height - 1, t1 - t0))

t1 = timeit.default_timer()
print("Done!!!. Total time cost: {}".format(t1 - t0))







	Processed sinograms in the hdf-file then can be converted to 16-bit tiff images (i.e. to be used by cone-beam
reconstruction software provided by tomography-system suppliers). Otherwise, Astra Toolbox [https://github.com/cicwi/WalnutReconstructionCodes/blob/master/GroundTruthReconstruction.py]
can be used for reconstruction without the need of this conversion step.

import timeit
import multiprocessing as mp
from joblib import Parallel, delayed
import numpy as np
import algotom.io.loadersaver as losa

input_file = "E:/tmp/projections_preprocessed.hdf"
output_base = "E:/tmp/tif_projections/"

data = losa.load_hdf(input_file, key_path='entry/data')
# Note that the shape of data has been changed after the previous step
# where sinograms are arranged along 0-axis. Now we want to save the data
# as projections which are arranged along 1-axis.
(height, depth, width) = data.shape

t0 = timeit.default_timer()
# For parallel writing tif-images
ncore = mp.cpu_count()
chunk_size = np.clip(ncore - 1, 1, depth - 1)
last_chunk = depth - chunk_size * (depth // chunk_size)

for i in np.arange(0, depth - last_chunk, chunk_size):
    mat_stack = data[:, i: i + chunk_size, :]
    mat_stack = np.uint16(mat_stack)  # Convert to 16-bit data for tif-format
    file_names = [(output_base + "/proj_" + ("0000" + str(j))[-5:] + ".tif") for j in range(i, i + chunk_size)]
    # Save files in parallel
    Parallel(n_jobs=ncore, prefer="processes")(delayed(losa.save_image)(file_names[j], mat_stack[:, j, :]) for j in range(chunk_size))

if last_chunk != 0:
    mat_stack = data[:, depth - last_chunk:depth, :]
    mat_stack = np.uint16(mat_stack)  # Convert to 16-bit data for tif-format
    file_names = [(output_base + "/proj_" + ("0000" + str(j))[-5:] + ".tif") for j in range(depth - last_chunk, depth)]
    # Save files in parallel
    Parallel(n_jobs=ncore, prefer="processes")(delayed(losa.save_image)(file_names[j], mat_stack[:, j, :]) for j in range(last_chunk))

t1 = timeit.default_timer()
print("Done!!!. Total time cost: {}".format(t1 - t0))
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Fig. 4.4.1 Reconstructed images, before and after applied pre-processing methods, from projection-images acquired by
a commercial cone-beam system. Data provided by Dr Mohammed Azeem [https://le.ac.uk/engineering/research/mechanics-of-materials/people]
















            

          

      

      

    

  

    
      
          
            
  
4.5. Complete workflow for processing tomographic data

This guide presents a comprehensive workflow for processing tomographic data, starting from raw data. In addition,
it includes useful tips and explanations to users’ common mistakes.


4.5.1. Assessing raw data

A typical tomographic dataset includes:


	Raw data acquired by a detector which are: projection images, flat-field image, and dark-field images.


	Metadata that provides information about the experimental setup, such as rotation angles, energy, pixel size,
sample-detector distance, and any other relevant parameters.




Visual inspection (using ImageJ) can help determine whether raw data are of sufficient quality. Users may want to
perform the following checks:


	Verify that the first and the last projection are 180-degree apart:


If raw data are in hdf/h5/nxs format, the projections can be extracted and saved as
tif images as the following:

import numpy as np
import algotom.io.loadersaver as losa

file_path = "E:/Tomo_data/scan_68067.hdf"
output_base = "E:/tmp/extract_tifs/"
proj_path = "entry/projections"  # Refer section 1.2.1 to know how to get
                                 # path to a dataset in a hdf file.
flat_path = "entry/flats"
flat_img = np.mean(np.asarray(losa.load_hdf(file_path, flat_path)), axis=0)
nmean = np.mean(flat_img)
flat_img[flat_img == 0.0] = nmean  # To avoid zero division

proj_obj = losa.load_hdf(file_path, proj_path)  # hdf object
proj_0 = proj_obj[0, :, :] / flat_img
losa.save_image(output_base + "/proj_0.tif", proj_0)
proj_180 = proj_obj[-1, :, :] / flat_img
losa.save_image(output_base + "/proj_180.tif", proj_180)





If the first and last projection are 180-degree apart, the second image should be a mirror
reflection (left-right flip) of the first image.

[image: ../../_images/img_4_5_1.jpg]





	If data were acquired using a 360-degree scan with an offset rotation axis [https://doi.org/10.1364/OE.418448],
it is important to verify that the rotation axis is positioned to one side of the field of view (FOV). This can be done
by checking for an overlap between the 0-degree projection and the left-right flipped 180-degree projection image.


[image: ../../_images/img_4_5_2.jpg]





	Check if the rotation axis is tilted. This can be done by calculating the difference/average between the
0-degree projection and the 180-degree projection, then examining the resulting image for a symmetric line.
If the x-location of the symmetric line is the same at the top and bottom of the image, the rotation axis
is properly aligned.


[image: ../../_images/img_4_5_3.jpg]
If a tilt is detected, the tilt angle can be accurately calculated by locating the center of rotation [https://algotom.readthedocs.io/en/latest/toc/api/algotom.prep.calculation.html#algotom.prep.calculation.find_center_vo]
using sinograms generated at the top, middle, and bottom of the FOV; then applying a linear fit to the results.
The resulting tilt angle can be used to correct the tilted tomographic images, as shown
here [https://github.com/algotom/algotom/blob/master/examples/example_09_generate_tilted_sinogram.py].






	Ensure that projection images were acquired at evenly spaced angles and there was no stage jittering during
the scan by inspecting a sinogram image:


[image: ../../_images/img_4_5_4.jpg]
If raw data are in hdf/h5/nxs format, the sinogram can be extracted and saved as tif format as follows:

import numpy as np
import algotom.io.loadersaver as losa

file_path = "E:/Tomo_data/scan_68067.hdf"
output_base = "E:/tmp/extract_tifs/"
proj_path = "entry/projections"  # Refer section 1.2.1 to know how to get
                                 # path to a dataset in a hdf file.
flat_path = "entry/flats"
flat_img = np.mean(np.asarray(losa.load_hdf(file_path, flat_path)), axis=0)
nmean = np.mean(flat_img)
flat_img[flat_img == 0.0] = nmean  # To avoid zero division

proj_obj = losa.load_hdf(file_path, proj_path)  # hdf object
(depth, height, width) = proj_obj.shape
sino_idx = height // 2
sinogram = proj_obj[:, sino_idx, :] / flat_img[sino_idx]
losa.save_image(output_base + "/sinogram.tif", sinogram)





If input data are in tif format, we need to convert them to the hdf format for fast extracting
sinogram image:

import os
import shutil
import numpy as np
import algotom.io.converter as cvr
import algotom.io.loadersaver as losa

proj_path = "E:/Tomo_data/scan_68067/projections/"
flat_path = "E:/Tomo_data/scan_68067/flats/"

output_base = "E:/tmp/extract_tifs/"

flat_img = np.mean(np.asarray(
    [losa.load_image(file) for file in losa.find_file(flat_path + "/*tif*")]), axis=0)
nmean = np.mean(flat_img)
flat_img[flat_img == 0.0] = nmean  # To avoid zero division

# Convert data to hdf format for fast extracting sinograms.
hdf_file_path = output_base + "/hdf_converted/" + "tomo_data.hdf"
key_path = "entry/data"
cvr.convert_tif_to_hdf(proj_path, hdf_file_path, key_path=key_path)
proj_obj, hdf_obj = losa.load_hdf(hdf_file_path, key_path, return_file_obj=True)
(depth, height, width) = proj_obj.shape

sino_idx = height // 2
sinogram = proj_obj[:, sino_idx, :] / flat_img[sino_idx]
losa.save_image(output_base + "/sinogram.tif", sinogram)
hdf_obj.close()
# Remove the hdf file if needs to
if os.path.isdir(output_base + "/hdf_converted/"):
    shutil.rmtree(output_base + "/hdf_converted/")















4.5.2. Reconstructing several slices

In high throughput tomographic systems, it’s common that users want to quickly reconstruct only
a few slices in order to verify the quality of the data or to locate the region of interest for
higher resolution scans. This can be achieved by following these steps:


	Load the raw data and the corresponding flat-field and dark-field images. It’s common to acquire
multiple flat and dark images (usually between 10 and 50) and average them to improve the
signal-to-noise (SNR) ratio. Once the flat and dark images have been averaged, they can be used for
flat-field correction.


If raw data are in tif format, we need to convert them to hdf format first:

import numpy as np
import algotom.io.loadersaver as losa
import algotom.io.converter as cvr
import algotom.prep.correction as corr
import algotom.prep.calculation as calc
import algotom.prep.removal as remo
import algotom.prep.filtering as filt
import algotom.rec.reconstruction as rec


proj_path = "E:/Tomo_data/scan_68067_tif/projections/"
flat_path = "E:/Tomo_data/scan_68067_tif/flats/"
dark_path = "E:/Tomo_data/scan_68067_tif/darks/"

output_base = "E:/output/rec_few_slices/"

# Load dark-field images and flat-field images.
flats = losa.get_tif_stack(flat_path)
darks = losa.get_tif_stack(dark_path)

# Convert tif images to hdf format for fast extracting sinograms.
file_path = output_base + "/tmp_/" + "tomo_data.hdf"
key_path = "entry/projections"
cvr.convert_tif_to_hdf(proj_path, file_path, key_path=key_path,
                       option={"entry/flats": flats, "entry/darks": darks})





Working with a hdf file is straightforward as follows:

import numpy as np
import algotom.io.loadersaver as losa
import algotom.io.converter as cvr
import algotom.prep.correction as corr
import algotom.prep.calculation as calc
import algotom.prep.removal as remo
import algotom.prep.filtering as filt
import algotom.rec.reconstruction as rec


file_path = "E:/Tomo_data/scan_68067.hdf"
output_base = "E:/output/rec_few_slices/"
proj_path = "entry/projections"  # Refer section 1.2.1 to know how to get
                                 # path to a dataset in a hdf file.
flat_path = "entry/flats"
dark_path = "entry/darks"

# Load data, average flat and dark images
proj_obj = losa.load_hdf(file_path, proj_path)  # hdf object
(depth, height, width) = proj_obj.shape
flat_field = np.mean(np.asarray(losa.load_hdf(file_path, flat_path)), axis=0)
dark_field = np.mean(np.asarray(losa.load_hdf(file_path, dark_path)), axis=0)

# If the rotation angles are not provided, e.g. from metadata of the HDF file,
# they can be generated automatically in a reconstruction method. Note that
# the rotation angles are in radians as requested by the reconstruction method.
# To rotate the reconstructed image, simply add an offset angle using the following method:
offset_angle = 0.0  # Degree
angles = np.deg2rad(offset_angle + np.linspace(0.0, 180.0, depth))

# Specify the range of slices to be reconstructed
start_slice = 100
stop_slice = height - 100
step_slice = 100

# Extract sinogram at the middle for calculating the center of rotation
idx = height // 2
sinogram = corr.flat_field_correction(proj_obj[:, idx, :], flat_field[idx],
                                      dark_field[idx])
center = calc.find_center_vo(sinogram)
print("Center of rotation: {}".format(center))

# Extract sinograms and perform flat-field correction
for idx in range(start_slice, stop_slice + 1, step_slice):
    sinogram = corr.flat_field_correction(proj_obj[:, idx, :], flat_field[idx],
                                          dark_field[idx])
    # Apply pre-processing methods










	Apply pre-processing methods: zinger removal, ring artifact removal, and/or denoising to sinograms.
Note that there are many choices for ring-removal methods, but for this step we may just want a
fast method.


# ...
    # Apply pre-processing methods
    sinogram = remo.remove_zinger(sinogram, 0.08)
    sinogram = remo.remove_stripe_based_normalization(sinogram, 15)
    sinogram = filt.fresnel_filter(sinogram, 100)
    # Perform reconstruction










	Perform reconstruction and save the results to tif. Algotom provides reconstruction methods
that can run on either CPU or GPU. It also provides the wrappers of the gridrec method, available
in Tomopy, which is very fast for CPU-only computers; and iterative methods available in Astra
Toolbox. Note that if users want to use these additional wrappers, Tomopy and Astra will need to
be installed along with Algotom.


# ...
    # Perform reconstruction
    # Using a cpu method
    rec_img = rec.dfi_reconstruction(sinogram, center, angles=angles,
                                     apply_log=True)
    # # Other options:
    # # Using a gpu method
    # rec_img = rec.fbp_reconstruction(sinogram, center, angles=angles,
    #                                  apply_log=True, gpu=True)
    # # Using a cpu method, available in Tomopy
    # rec_img = rec.gridrec_reconstruction(sinogram, center, angles=angles,
    #                                  apply_log=True)
    # # Using a gpu method, available in Astra Toolbox
    # rec_img = rec.astra_reconstruction(sinogram, center, angles=angles,
    #                                    method="SIRT_CUDA", num_iter=150,
    #                                    apply_log=True)
    out_file = output_base + "/rec_" + ("00000" + str(idx))[-5:] + ".tif"
    losa.save_image(out_file, rec_img)















4.5.3. Finding the center of rotation

Algotom offers several methods for automatically calculating the center of rotation (COR),
which refers to the rotation axis of the sample stage with respect to the FOV. These methods
work on different processing spaces (Fig. 4.5.1) and can be selected according to specific
types of input images.



[image: ../../_images/fig_4_5_1.png]
Fig. 4.5.1 Different processing spaces can be used for finding the center of rotation.







	Methods that work in the projection space [https://algotom.readthedocs.io/en/latest/toc/api/algotom.prep.calculation.html#algotom.prep.calculation.find_shift_based_phase_correlation]
are the fastest and simplest, but they are also the least reliable.


import timeit
import algotom.prep.calculation as calc

# Data is at: https://doi.org/10.5281/zenodo.1443567
# Steps for loading data are similar to above sections

proj_0 = proj_obj[0, :, :] / flat_field
proj_180 = proj_obj[-1, :, :] / flat_field

print("Image size: {}".format(flat_field.shape))
t0 = timeit.default_timer()
center = calc.find_center_based_phase_correlation(proj_0, proj_180)
t1 = timeit.default_timer()
print("Using phase correlation. Center: {0}. Time: {1}".format(center, t1 -t0))

t0 = timeit.default_timer()
center = calc.find_center_projection(proj_0, proj_180, chunk_height=100)
t1 = timeit.default_timer()
print("Using image correlation. Center: {0}. Time: {1}".format(center, t1 -t0))





>>>
Image size: (2160, 2560)
Using phase correlation. Center: 1272.8564415436447. Time: 1.6949839999999998
Using image correlation. Center: 1272.8176879882812. Time: 15.652110699999998










	The most reliable method for automatically calculating the center of rotation is a method [https://algotom.readthedocs.io/en/latest/toc/api/algotom.prep.calculation.html#algotom.prep.calculation.find_center_vo]
that works on a 180-degree sinogram image, as proposed in [R21]. This method has been
extensively tested on 2,000 micro-tomography datasets [https://tomobank.readthedocs.io/en/latest/index.html],
achieving a success rate of 98%. A visual explanation of how the method works is provided in Fig. 4.5.2.



[image: ../../_images/fig_4_5_2.png]
Fig. 4.5.2 Explanation of how the autocentering method in the sinogram space works.



idx = height // 2
sinogram = corr.flat_field_correction(proj_obj[:, idx, :], flat_field[idx],
                                      dark_field[idx])
t0 = timeit.default_timer()
radius = width // 16
mid = width // 2
# Enable parallel computing using the "ncore" option.
center = calc.find_center_vo(sinogram, start=mid - radius, stop=mid + radius,
                             ncore=8)
t1 = timeit.default_timer()
print("Using sinogram metric. Center: {0}. Time: {1}".format(center, t1 - t0))





>>>
Using sinogram metric. Center: 1272.75. Time: 8.0966264





The method’s default parameters work for most X-ray microtomography datasets, as extensively tested. However,
users can adjust these parameters, such as the ratio and ver_drop parameters, to suit their data. A unique
feature of this method is the ability to average multiple sinograms to improve the signal-to-noise ratio and use
the result as input for the method. Note that strongly smoothed or blurry sinograms resulting from denoising methods
or phase-retrieval methods can impact the performance of this method.






	Another method, available from Algotom 1.3, works in the reconstruction space [https://algotom.readthedocs.io/en/latest/toc/api/algotom.rec.reconstruction.html#algotom.rec.reconstruction.find_center_based_slice_metric]
and evaluates a slice metric to determine the best center of rotation. This method is slower than the other methods
and is most suitable for performing small, fine searching ranges around the coarse center found by previous methods.
It may not be suitable for use on low SNR data.


import algotom.rec.reconstruction as rec

t0 = timeit.default_timer()
center = rec.find_center_based_slice_metric(sinogram, mid-radius, mid + radius,
                                            zoom=0.5, method='fbp', gpu=True,
                                            apply_log=True)
t1 = timeit.default_timer()
print("Using slice metric. Reconstruction method: FBP. Center: {0}. Time: {1}".format(center, t1 - t0))

t0 = timeit.default_timer()
center = rec.find_center_based_slice_metric(sinogram, mid-radius, mid + radius,
                                            zoom=0.5, method='dfi',
                                            apply_log=True)
t1 = timeit.default_timer()
print("Using slice metric. Reconstruction method: DFI. Center: {0}. Time: {1}".format(center, t1 - t0))

t0 = timeit.default_timer()
center = rec.find_center_based_slice_metric(sinogram, mid-radius, mid + radius,
                                            zoom=0.5, method='gridrec',
                                            apply_log=True)
t1 = timeit.default_timer()
print("Using slice metric. Reconstruction method: Gridrec. Center: {0}. Time: {1}".format(center, t1 - t0))





>>>
Using slice metric. Reconstruction method: FBP. Center: 1272.5. Time: 104.3659703
Using slice metric. Reconstruction method: DFI. Center: 1272.5. Time: 85.9248028
Using slice metric. Reconstruction method: Gridrec. Center: 1272.5. Time: 14.54944309999999





If users would like to apply a customized function for calculating a slice metric, it can be done as follows:

def measure_metric(mat, n=2):
    metric = np.abs(np.mean(mat[mat < 0.0])) ** n
    return metric
center = rec.find_center_based_slice_metric(sinogram, mid-10, mid + 10,
                                            zoom=1.0, method='fbp', gpu=True,
                                            apply_log=True,
                                            metric_function=measure_metric, n=2)










	If the automated methods fail to find the center of rotation, users can rely on the following manual methods
(available from Algotom 1.3) to locate it:



	The first manual method [https://algotom.readthedocs.io/en/latest/toc/api/algotom.util.utility.html#algotom.util.utility.find_center_visual_sinograms]
involves generating a list of 360-degree sinograms created from the input 180-degree sinogram using a list
of estimated CORs. Users can find the best COR by identifying the generated sinogram that has a continuous
transition between the two halves of the sinogram, as illustrated in the figure below.

import algotom.util.utility as util

output_base = "E:/tmp/manual_finding/using_sinograms/"
util.find_center_visual_sinograms(sinogram, output_base, width // 2 - 20, width // 2 + 20,
                                  step=1, zoom=1.0)





[image: ../../_images/img_4_5_5.jpg]


	The second manual method involves reconstructing a list of slices using a list of estimated CORs. Users
can find the best COR by visually inspecting the reconstructed slices and selecting the one with the least
streak artifacts.

output_base = "E:/tmp/manual_finding/using_slices/"
util.find_center_visual_slices(sinogram, output_base, width // 2 - 20,
                               width // 2 + 20, 1, zoom=1.0, method="fbp", gpu=True)
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4.5.4. Tweaking parameters of preprocessing methods

When reconstructing synchrotron-based X-ray microtomography data, users often spend most of time tweaking
parameters of preprocessing methods such as ring artifact removal or contrast-enhancement methods.
We can setup different workflows to test methods as below:


	To compare different ring removal methods; note that in Algotom, some well-known methods are improved
and have additional options for customization:

# Steps for loading data are similar to above sections

# To create new output-folder for each time of running the script.
output_base0 = "E:/tmp/compare_ring_removal_methods/"
folder_name = losa.make_folder_name(output_base0, name_prefix="Ring_removal", zero_prefix=3)
output_base = output_base0 + "/" + folder_name + "/"

idx = height // 2
sinogram = corr.flat_field_correction(proj_obj[:, idx, :], flat_field[idx],
                                      dark_field[idx])
center = calc.find_center_vo(sinogram)

# Using the combination of algorithms
sinogram1 = remo.remove_all_stripe(sinogram, snr=3.0, la_size=51, sm_size=21)
rec_img = rec.fbp_reconstruction(sinogram1, center)
losa.save_image(output_base + "/remove_all_stripe.tif", rec_img)

# Using the sorting-based method
sinogram2 = remo.remove_stripe_based_sorting(sinogram, size=21, dim=1)
rec_img = rec.fbp_reconstruction(sinogram2, center)
losa.save_image(output_base + "/remove_stripe_based_sorting.tif", rec_img)

# Using the fitting-based method
sinogram3 = remo.remove_stripe_based_fitting(sinogram, order=2, sigma=10)
rec_img = rec.fbp_reconstruction(sinogram3, center)
losa.save_image(output_base + "/remove_stripe_based_fitting.tif", rec_img)

# Using the filtering-based method
sinogram4 = remo.remove_stripe_based_filtering(sinogram, sigma=3, size=21, dim=1,
                                               sort=True)
rec_img = rec.fbp_reconstruction(sinogram4, center)
losa.save_image(output_base + "/remove_stripe_based_filtering.tif", rec_img)

# Using the 2d filtering and sorting-based method
sinogram5 = remo.remove_stripe_based_2d_filtering_sorting(sinogram, sigma=3,
                                                          size=21, dim=1)
rec_img = rec.fbp_reconstruction(sinogram5, center)
losa.save_image(output_base + "/remove_stripe_based_2d_filtering_sorting.tif", rec_img)

# Using the interpolation-based method
sinogram6 = remo.remove_stripe_based_interpolation(sinogram, snr=3.0, size=51)
rec_img = rec.fbp_reconstruction(sinogram6, center)
losa.save_image(output_base + "/remove_stripe_based_interpolation.tif", rec_img)

# Using the normalization-based method
sinogram7 = remo.remove_stripe_based_normalization(sinogram, sigma=15)
rec_img = rec.fbp_reconstruction(sinogram7, center)
losa.save_image(output_base + "/remove_stripe_based_normalization.tif", rec_img)

# Using the regularization-based method
sinogram8 = remo.remove_stripe_based_regularization(sinogram, alpha=0.0005,
                                                    num_chunk=1, apply_log=True,
                                                    sort=False)
rec_img = rec.fbp_reconstruction(sinogram8, center)
losa.save_image(output_base + "/remove_stripe_based_regularization.tif", rec_img)

# Using the fft-based method
sinogram9 = remo.remove_stripe_based_fft(sinogram, u=20, n=8, v=1, sort=False)
rec_img = rec.fbp_reconstruction(sinogram9, center)
losa.save_image(output_base + "/remove_stripe_based_fft.tif", rec_img)

# Using the wavelet-fft-based method
sinogram10 = remo.remove_stripe_based_wavelet_fft(sinogram, level=5, size=1,
                                                 wavelet_name='db9',
                                                 window_name='gaussian', sort=False)
rec_img = rec.fbp_reconstruction(sinogram10, center)
losa.save_image(output_base + "/remove_stripe_based_wavelet_fft.tif", rec_img)







	To perform scanning a parameter of a ring removal method

# To create new output-folder for each time of running the script.
output_base0 = "E:/tmp/scan_parameters/"
folder_name = losa.make_folder_name(output_base0, name_prefix="Scan_ratio", zero_prefix=3)
output_base = output_base0 + "/" + folder_name + "/"

for value in np.linspace(1.1, 3.0, 20):
    sinogram1 = remo.remove_all_stripe(sinogram, snr=value, la_size=51, sm_size=21)
    name = "snr_{0:2.2f}".format(value)
    rec_img = rec.fbp_reconstruction(sinogram1, center)
    losa.save_image(output_base + "/scan_value_" + name + ".tif", rec_img)





or a contrast-enhancement method

for ratio in np.arange(100, 1600, 400):
    sinogram1 = filt.fresnel_filter(sinogram, ratio, dim=1)
    name = "snr_{0:4.2f}".format(ratio)
    rec_img = rec.fbp_reconstruction(sinogram1, center)
    losa.save_image(output_base + "/scan_value_" + name + ".tif", rec_img)
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4.5.5. Choosing a reconstruction method

The quality of reconstructed data in synchrotron-based X-ray microtomography depends heavily on the
preprocessing methods applied. If the number of acquired projections is standard and the data are properly cleaned,
the choice of reconstruction method will have less impact on the quality of the final results. Therefore, users can
choose a reconstruction method based on the availability of computing resources.


output_base = "E:/tmp/compare_reconstruction_methods/"

# Using the direct Fourier inversion method (CPU)
t0 = timeit.default_timer()
rec_img = rec.dfi_reconstruction(sinogram, center)
print("Reconstructed image size: {}".format(rec_img.shape))
losa.save_image(output_base + "/DFI_method_cpu.tif", rec_img)
t1 = timeit.default_timer()
print("Using the DFI method (CPU). Time: {}".format(t1 - t0))

# Using the filtered back-projection method (CPU)
t0 = timeit.default_timer()
rec_img = rec.fbp_reconstruction(sinogram, center, gpu=False)
losa.save_image(output_base + "/FBP_method_cpu.tif", rec_img)
t1 = timeit.default_timer()
print("Using the FBP method (CPU). Time: {}".format(t1 - t0))

# Using the filtered back-projection method (GPU)
t0 = timeit.default_timer()
rec_img = rec.fbp_reconstruction(sinogram, center, gpu=True)
losa.save_image(output_base + "/FBP_method_gpu.tif", rec_img)
t1 = timeit.default_timer()
print("Using the FBP method (GPU). Time: {}".format(t1 - t0))

# Using the gridrec method (CPU)
t0 = timeit.default_timer()
rec_img = rec.gridrec_reconstruction(sinogram, center, ncore=1)
losa.save_image(output_base + "/gridrec_method_cpu.tif", rec_img)
t1 = timeit.default_timer()
print("Using the gridrec method (CPU). Time: {}".format(t1 - t0))





>>>
Reconstructed image size: (2560, 2560)
Using the DFI method (CPU). Time: 12.7383788
Using the FBP method (CPU). Time: 5.827241100000002
Using the FBP method (GPU). Time: 3.001648600000003
Using the gridrec method (CPU). Time: 1.7366413999999963
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When dealing with undersampled sinogram, iterative reconstruction methods like SIRT (Simultaneous iterative reconstruction technique) [https://doi.org/10.1016/0022-5193(72)90180-4]
can be advantageous over Fourier-based methods. However, iterative methods are computationally
expensive. A workaround is to improve the Fourier-based methods by applying denoising and
upsampling methods [https://algotom.readthedocs.io/en/latest/toc/api/algotom.prep.correction.html#algotom.prep.correction.upsample_sinogram] (Algotom >=1.3)
to the sinogram.


output_base = "E:/tmp/improve_fft_method/"

print("Sinogram size {}".format(sinogram.shape))
# Using FBP method
rec_img1 = rec.fbp_reconstruction(sinogram, center, filter_name="hann")
losa.save_image(output_base + "/fbp_recon.tif", rec_img1)

# Using SIRT method with 150 number of iterations
rec_img2 = rec.astra_reconstruction(sinogram, center, method="SIRT_CUDA", num_iter=150)
losa.save_image(output_base + "/sirt_recon.tif", rec_img2)

# Denosing + upsampling sinogram + FBP reconstruction
sinogram = filt.fresnel_filter(sinogram, 100)
sinogram = corr.upsample_sinogram(sinogram, 2, center)
print("Upsampled sinogram size {}".format(sinogram.shape))
rec_img3 = rec.fbp_reconstruction(sinogram, center, filter_name="hann")
losa.save_image(output_base + "/fbp_denoising_upsampling.tif", rec_img3)
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4.5.6. Performing full reconstruction

After completing all the steps for selecting parameters and testing methods, we can proceed with the
full reconstruction process. The main difference compared to the previous steps is that
sinograms are processed in chunks, which reduces I/O overhead and utilizes parallel processing.
The following codes are available here [https://github.com/algotom/algotom/tree/master/examples/common_data_processing_workflow/full_reconstruction]
for both tif and hdf input formats, but we can break down the workflow and provide detailed explanations:


	Import the necessary modules from Algotom, specify the input and output paths, and add
options to make it easier to modify the workflow later on.

import numpy as np
import timeit
import algotom.io.loadersaver as losa
import algotom.prep.correction as corr
import algotom.prep.calculation as calc
import algotom.rec.reconstruction as rec
import algotom.prep.removal as remo
import algotom.prep.filtering as filt
import algotom.util.utility as util

# Input file
file_path = "E:/Tomo_data/scan_68067.hdf"

# Specify output path, create new folder each time of running to avoid overwriting data.
output_base0 = "E:/full_reconstruction/"
folder_name = losa.make_folder_name(output_base0, name_prefix="recon", zero_prefix=3)
output_base = output_base0 + "/" + folder_name + "/"

# Optional parameters
start_slice = 10
stop_slice = -1
chunk = 100  # Number of slices to be reconstructed in one go. Adjust to suit RAM or GPU memory.
ncore = 16  # Number of cpu-core for parallel processing. Set to None for autoselecting.
output_format = "tif"  # "tif" or "hdf".
preprocessing = True  # Clean data before reconstruction.

# Give alias to a reconstruction method which is convenient for later change
# recon_method = rec.dfi_reconstruction
# recon_method = rec.fbp_reconstruction
recon_method = rec.gridrec_reconstruction # Fast cpu-method. Must install Tomopy.
# recon_method = rec.astra_reconstruction # To use iterative methods. Must install Astra.

# Provide metadata for loading hdf file, get data shape and rotation angles.
proj_path = "/entry/projections"
flat_path = "/entry/flats"
dark_path = "/entry/darks"
angle_path = "/entry/rotation_angle"







	Load dark-field images, flat-field images, rotation angles; and calculate the center of rotation.

t_start = timeit.default_timer()
print("---------------------------------------------------------------")
print("-----------------------------Start-----------------------------\n")
print("1 -> Load dark-field and flat-field images, average each result")
# Load data, average flat and dark images, get data shape and rotation angles.
proj_obj = losa.load_hdf(file_path, proj_path)  # hdf object
(depth, height, width) = proj_obj.shape
flat_field = np.mean(np.asarray(losa.load_hdf(file_path, flat_path)), axis=0)
dark_field = np.mean(np.asarray(losa.load_hdf(file_path, dark_path)), axis=0)
angles = np.deg2rad(np.squeeze(np.asarray(losa.load_hdf(file_path, angle_path))))
(depth, height, width) = proj_obj.shape

print("2 -> Calculate the center-of-rotation")
# Extract sinogram at the middle for calculating the center of rotation
index = height // 2
sinogram = corr.flat_field_correction(proj_obj[:, index, :], flat_field[index, :],
                                      dark_field[index, :])
center = calc.find_center_vo(sinogram)
print("Center-of-rotation is {}".format(center))







	Loop through the sinograms chunk-by-chunk, apply the selected pre-processing methods in parallel,
and perform the reconstruction.

if (stop_slice == -1) or (stop_slice > height):
    stop_slice = height
total_slice = stop_slice - start_slice
if output_format == "hdf":
    # Note about the change of data-shape
    recon_hdf = losa.open_hdf_stream(output_base + "/recon_data.hdf",
                                     (total_slice, width, width),
                                     key_path='entry/data',
                                     data_type='float32', overwrite=True)
t_load = 0.0
t_prep = 0.0
t_rec = 0.0
t_save = 0.0
chunk = np.clip(chunk, 1, total_slice)
last_chunk = total_slice - chunk * (total_slice // chunk)

# Perform full reconstruction
for i in np.arange(start_slice, start_slice + total_slice - last_chunk, chunk):
    start_sino = i
    stop_sino = start_sino + chunk
    # Load data, perform flat-field correction
    t0 = timeit.default_timer()
    sinograms = corr.flat_field_correction(
        proj_obj[:, start_sino:stop_sino, :],
        flat_field[start_sino:stop_sino, :],
        dark_field[start_sino:stop_sino, :])
    t1 = timeit.default_timer()
    t_load = t_load + t1 - t0

    # Perform pre-processing
    if preprocessing:
        t0 = timeit.default_timer()
        sinograms = util.apply_method_to_multiple_sinograms(sinograms,
                                                            "remove_zinger",
                                                            [0.08, 1],
                                                            ncore=ncore,
                                                            prefer="threads")
        sinograms = util.apply_method_to_multiple_sinograms(sinograms,
                                                            "remove_all_stripe",
                                                            [3.0, 51, 21],
                                                            ncore=ncore,
                                                            prefer="threads")
        sinograms = util.apply_method_to_multiple_sinograms(sinograms,
                                                            "fresnel_filter",
                                                            [200, 1],
                                                            ncore=ncore,
                                                            prefer="threads")
        t1 = timeit.default_timer()
        t_prep = t_prep + t1 - t0

    # Perform reconstruction
    t0 = timeit.default_timer()
    recon_imgs = recon_method(sinograms, center, angles=angles, ncore=ncore)
    t1 = timeit.default_timer()
    t_rec = t_rec + t1 - t0

    # Save output
    t0 = timeit.default_timer()
    if output_format == "hdf":
        recon_hdf[start_sino - start_slice:stop_sino - start_slice] = np.moveaxis(recon_imgs, 1, 0)
    else:
        for j in range(start_sino, stop_sino):
            out_file = output_base + "/rec_" + ("0000" + str(j))[-5:] + ".tif"
            losa.save_image(out_file, recon_imgs[:, j - start_sino, :])
    t1 = timeit.default_timer()
    t_save = t_save + t1 - t0
    t_stop = timeit.default_timer()
    print("Done slice: {0} - {1} . Time {2}".format(start_sino, stop_sino,
                                                    t_stop - t_start))
if last_chunk != 0:
    start_sino = start_slice + total_slice - last_chunk
    stop_sino = start_sino + last_chunk

    # Load data, perform flat-field correction
    t0 = timeit.default_timer()
    sinograms = corr.flat_field_correction(
        proj_obj[:, start_sino:stop_sino, :],
        flat_field[start_sino:stop_sino, :],
        dark_field[start_sino:stop_sino, :])
    t1 = timeit.default_timer()
    t_load = t_load + t1 - t0

    # Perform pre-processing
    if preprocessing:
        t0 = timeit.default_timer()
        sinograms = util.apply_method_to_multiple_sinograms(sinograms,
                                                            "remove_zinger",
                                                            [0.08, 1],
                                                            ncore=ncore,
                                                            prefer="threads")
        sinograms = util.apply_method_to_multiple_sinograms(sinograms,
                                                            "remove_all_stripe",
                                                            [3.0, 51, 21],
                                                            ncore=ncore,
                                                            prefer="threads")
        sinograms = util.apply_method_to_multiple_sinograms(sinograms,
                                                            "fresnel_filter",
                                                            [200, 1],
                                                            ncore=ncore)
        t1 = timeit.default_timer()
        t_prep = t_prep + t1 - t0

    # Perform reconstruction
    t0 = timeit.default_timer()
    recon_imgs = recon_method(sinograms, center, angles=angles, ncore=ncore)
    t1 = timeit.default_timer()
    t_rec = t_rec + t1 - t0

    # Save output
    t0 = timeit.default_timer()
    if output_format == "hdf":
        recon_hdf[start_sino - start_slice:stop_sino - start_slice] = np.moveaxis(recon_imgs, 1, 0)
    else:
        for j in range(start_sino, stop_sino):
            out_file = output_base + "/rec_" + ("0000" + str(j))[-5:] + ".tif"
            losa.save_image(out_file, recon_imgs[:, j - start_sino, :])
    t1 = timeit.default_timer()
    t_save = t_save + t1 - t0
    t_stop = timeit.default_timer()
    print("Done slice: {0} - {1} . Time {2}".format(start_sino, stop_sino,
                                                    t_stop - t_start))
print("---------------------------------------------------------------")
print("-----------------------------Done-----------------------------")
print("Loading data cost: {0:0.2f}s".format(t_load))
print("Preprocessing cost: {0:0.2f}s".format(t_prep))
print("Reconstruction cost: {0:0.2f}s".format(t_rec))
print("Saving output cost: {0:0.2f}s".format(t_save))
print("Total time cost : {0:0.2f}s".format(t_stop - t_start))





>>>
---------------------------------------------------------------
-----------------------------Start-----------------------------

1 -> Load dark-field and flat-field images, average each result
2 -> Calculate the center-of-rotation
Center-of-rotation is 1272.75
Done slice: 10 - 110 . Time 189.6021034
Done slice: 110 - 210 . Time 366.9538149
Done slice: 210 - 310 . Time 579.1721645
Done slice: 310 - 410 . Time 783.6394176
Done slice: 410 - 510 . Time 1001.0833168
Done slice: 510 - 610 . Time 1206.3565348
Done slice: 610 - 710 . Time 1415.9822423
Done slice: 710 - 810 . Time 1630.9875868
Done slice: 810 - 910 . Time 1844.1762275
Done slice: 910 - 1010 . Time 2052.5243417
Done slice: 1010 - 1110 . Time 2266.1704849000002
Done slice: 1110 - 1210 . Time 2485.4279775
Done slice: 1210 - 1310 . Time 2695.1756578000004
Done slice: 1310 - 1410 . Time 2902.663489
Done slice: 1410 - 1510 . Time 3122.5606983000002
Done slice: 1510 - 1610 . Time 3333.1580989000004
Done slice: 1610 - 1710 . Time 3545.0758953000004
Done slice: 1710 - 1810 . Time 3758.1900975000003
Done slice: 1810 - 1910 . Time 3974.6899012000003
Done slice: 1910 - 2010 . Time 4181.2648382
Done slice: 2010 - 2110 . Time 4389.6914713999995
Done slice: 2110 - 2160 . Time 4511.7352912
---------------------------------------------------------------
-----------------------------Done-----------------------------
Loading data cost: 675.88s
Preprocessing cost: 3213.10s
Reconstruction cost: 337.11s
Saving output cost: 276.67s
Total time cost : 4511.74s





As shown in the time cost list above, the most time-consuming step is pre-processing,
specifically the remove_all_stripe method, which relies on the median filter. Although
other options for faster ring removal methods are available, parameter tweaking may be
required for individual slices or datasets within the same experiment, which is impractical.
The advantage of the remove_all_stripe method is that the same set of parameters [https://opg.optica.org/oe/fulltext.cfm?uri=oe-26-22-28396&id=399265#g025]
can be applied to the entire volume and different datasets.








4.5.7. Automating the workflow

In practice, we often need to reconstruct not just one but hundreds or even thousands of datasets
per synchrotron beamtime. In these cases, manually processing each dataset would be time-consuming
and impractical. Instead, we can leverage the power of Python to automate the workflow.
The idea is to create a Python script that can iterate through a list of datasets and pass the path
of each dataset to the full reconstruction script for processing, either one-by-one on a local workstation
or in parallel on a cluster.

We need to modify the full-reconstruction script to accept the file path as a command-line argument.
This will allow us to pass the file path to the script dynamically from our automation script.
There are several ways of doing this:



	Using the sys module:


Modify the top of the full reconstruction script:

#  Script to perform full reconstruction, named full_reconstruction.py
import sys
import time
import timeit
import numpy as np
import algotom.io.loadersaver as losa
import algotom.util.utility as util
import algotom.prep.correction as corr
import algotom.prep.calculation as calc
import algotom.prep.removal as remo
import algotom.prep.filtering as filt
import algotom.rec.reconstruction as rec


file_path = sys.argv[1]  #  sys.argv[0] is the name of this script.
output_base = sys.argv[2]
# To pass arguments to this script, run:
# python full_reconstruction.py arg1 arg2

print("Load file: {}".format(file_path))
#  Script body ...





Then use the automation script as follows:

#  Script to call the full reconstruction script
import glob
import subprocess

python_interpreter = "C:/Users/nvo/Miniconda3/envs/algotom/python"
python_script = "full_reconstruction.py" #  At the same location of this script. Otherwise,
                                         #  providing the full path to full_reconstruction.py

input_folder = "E:/datasets/"
output_base = "E:/full_reconstruction/"
# Get a list of hdf files in the input folder.
list_file = glob.glob(input_folder + "/*hdf")

for file in list_file:
    script = python_interpreter + " " + python_script + " " + file.replace("\\", "/") + " " + output_base
    subprocess.call(script, shell=True)










	Using the argparse module:


Modify the full reconstruction script as below:

#  Script to perform full reconstruction, named full_reconstruction.py
import argparse
import time
import timeit
import numpy as np
import algotom.io.loadersaver as losa
import algotom.util.utility as util
import algotom.prep.correction as corr
import algotom.prep.calculation as calc
import algotom.prep.removal as remo
import algotom.prep.filtering as filt
import algotom.rec.reconstruction as rec


parser = argparse.ArgumentParser(description="Perform full reconstruction")
parser.add_argument("-i", dest="file_path", help="Path to input file", type=str, required=True)
parser.add_argument("-o", dest="output", help="Output folder", type=str, required=True)
args = parser.parse_args()
# To pass arguments to this script, run:
# python full_reconstruction.py -i file_path -o output

file_path = args.file_path
output_base = args.output

print("Load file: {}".format(file_path))
#  Script body ...





Then just slightly modify the automation script:

#  Script to call the full reconstruction script
import glob
import subprocess

python_interpreter = "C:/Users/nvo/Miniconda3/envs/algotom/python"
python_script = "full_reconstruction.py" #  At the same location of this script. Otherwise,
                                         #  providing the full path to full_reconstruction.py

input_folder = "E:/datasets/"
output_base = "E:/full_reconstruction/"
# Get a list of hdf files in the input folder.
list_file = glob.glob(input_folder + "/*hdf")

for file in list_file:
    script = python_interpreter + " " + python_script + " -i " + file.replace("\\", "/") + " -o " + output_base
    subprocess.call(script, shell=True)















The instructions above are for running the reconstruction on a local machine (WinOS). However, if users have access to a
cluster system (LinuxOS), they can take advantage of its resources to process multiple datasets in parallel using an
embarrassingly parallel approach. The procedure of how to run reconstruction process on a cluster is as follows:



	Install Python packages. Although a cluster may already have a standard Python environment with a set of
pre-installed packages, it may not include the package users need. In this case, users can create their own
Python environment. There are several ways to create a new Python environment, but one popular method is to use
conda. Conda is a package management system that makes it easy to create, manage environments and
packages. One of the advantages of conda is that it includes many popular Python packages, and it also
includes pip, which allows users to install packages only available on PyPI.org. If conda is not installed on
the cluster system, users can follow instructions here [https://docs.conda.io/projects/conda/en/latest/user-guide/install/linux.html]
to install it, then installing Python packages as shown here [https://algotom.readthedocs.io/en/latest/toc/section4/section4_1.html].


	Insert the full-path to the Python interpreter of the created environment at the top of python scripts:

#!/path/to/python/environment/bin/python

#  Script to perform full reconstruction, named full_reconstruction.py
import sys
# ...





then making the file executable by run the following command in a Linux terminal:

chmod +x <filename>







	Write a bash script to submit jobs to the cluster scheduler. The bash script can be embed inside a Python script
to make it easy to customize the workflow. The following example demonstrates how to do that for a SLURM cluster scheduler [https://help.rc.ufl.edu/doc/Sample_SLURM_Scripts]
(for Univa Grid Engine scheduler, refer the example here [https://github.com/algotom/algotom/tree/master/examples/utilities]):

#!/path/to/python/environment/bin/python

import os
import glob
import subprocess

python_script = "full_reconstruction.py"
use_gpu = True
input_folder = "/facility/beamline/data/year/proposals/visit/raw_data/"
# Get a list of nxs files in the input folder.
list_file = glob.glob(input_folder + "/*nxs")
# Specify where to save the processed data
output_base = "/facility/beamline/data/year/proposals/visit/processing/reconstruction"
# Specify the folder for cluster output-file and error-file.
cluster_dir = "/facility/beamline/data/year/proposals/visit/processing/cluster_output/"

# Define a method to create a folder for saving output message from the cluster.
def make_folder(folder_path):
    file_base = os.path.dirname(folder_path)
    if not os.path.exists(file_base):
        try:
            os.makedirs(file_base)
        except FileExistsError:
            pass
        except OSError:
            raise ValueError("Can't create the folder: {}".format(file_base))

sbatch_script_cpu = """#!/bin/bash

#SBATCH --job-name=demo_workflow
#SBATCH --ntasks 1
#SBATCH --cpus-per-task 16
#SBATCH --nodes=1
#SBATCH --mem=16G
#SBATCH --qos=normal
#SBATCH --time=60:00

srun -o {0}/output_%j.txt -e {0}/error_%j.txt ./{1} {2} {3}
"""

sbatch_script_gpu = """#!/bin/bash

#SBATCH --job-name=demo_workflow
#SBATCH --ntasks 1
#SBATCH --cpus-per-task 16
#SBATCH --nodes=1
#SBATCH --mem=16G
#SBATCH --gres=gpu:1
#SBATCH --qos=normal
#SBATCH --time=60:00

srun -o {0}/output_%j.txt -e {0}/error_%j.txt ./{1} {2} {3}
"""

for file_path in list_file:
    file_name = os.path.basename(file_path)
    name = file_name.replace(".nxs", "")
    output_folder = output_base + "/" + file_name + "/"
    print("Submit to process the raw-data file : {}...".format(file_name))
    cluster_output = cluster_dir + "/" + name + "/"
    make_folder(cluster_output)
    if use_gpu:
        sbatch_script = sbatch_script_gpu.format(cluster_output, python_script,
                                                 file_path, output_folder)
    else:
        sbatch_script = sbatch_script_cpu.format(cluster_output, python_script,
                                                 file_path, output_folder)
    # Call sbatch and pass the sbatch script contents as input
    process = subprocess.Popen(['sbatch'], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
    stdout, stderr = process.communicate(input=sbatch_script.encode())

    # Print the output and error messages
    print(stdout.decode())
    print(stderr.decode())
print("*********************************************")
print("             !!!!!! Done !!!!!!              ")
print("*********************************************")







	To run the script, make it executable and log in to a submitting job node. Users can modify the workflow above
by reconstructing multiple datasets at once, such as 10 datasets in one batch, and waiting for them to finish
before submitting another batch. This approach ensures fair use of cluster resources among multiple users.










4.5.8. Downsampling, rescaling, and reslicing reconstructed volume

Reconstructed volume is in 32-bit tif or hdf format. In the above example, the size of the volume
is 2150 x 2560 x 2560 pixels, which corresponds to ~50 GB of data. To enable post-analysis on software
for volume visualization and analysis; e.g. Avizo, Amira, DragonFly, Drishti, Paraview, 3D Slicer, …;
it is often necessary to apply data reduction techniques such as cropping, downsampling, or rescaling.
Algotom provides convenient functions for these tasks, which can be applied to a folder of tif slices or a hdf/nxs file.


import timeit
import algotom.io.loadersaver as losa
import algotom.post.postprocessing as post

output_base = "E:/output/data_reduction/"

# Rescale the volume to 16-bit data including cropping.
# Input is tif, output is tif
tif_folder = "E:/full_reconstruction/recon_001"
output0 = output_base + "/rescaling/"
folder_name = losa.make_folder_name(output0)  # To avoid overwriting
output = output0 + "/" + folder_name + "/"
t_start = timeit.default_timer()
post.rescale_dataset(tif_folder, output, nbit=16, minmax=None, skip=None,
                     crop=(100, 100, 200, 200, 200, 200))

# # Input is hdf, output is tif
# file_path = "E:/full_reconstruction/recon_002/recon_data.hdf"
# key_path = "entry/data"
# post.rescale_dataset(file_path, output, key_path=key_path, nbit=16, minmax=None,
#                      skip=None, crop=(100, 100, 200, 200, 200, 200))
t_stop = timeit.default_timer()
print("Done rescaling! Time cost {}".format(t_stop - t_start))


# Downsample the volume by 2 x 2 x 2 with cropping and rescaling to 8-bit.
output0 = output_base + "/downsampling/"
folder_name = losa.make_folder_name(output0)  # To avoid overwriting
output = output0 + "/" + folder_name + "/"
t_start = timeit.default_timer()
post.downsample_dataset(tif_folder, output, (2, 2, 2), method='mean',
                        rescaling=True, nbit=8, minmax=None, skip=None,
                        crop=(100, 100, 200, 200, 200, 200))
t_stop = timeit.default_timer()
print("Done downsampling! Time cost {}".format(t_stop - t_start))








Reslicing the reconstructed volume is another important post-processing tool, especially for limited-angle tomography.
While some software such as ImageJ or Avizo offer this function, they require loading the entire volume into memory,
making it impossible to use on computers with limited RAM. Starting from version 1.3, Algotom provides a reslicing
function that uses the hdf format as the back-end, eliminating the need for high memory usage. Additionally, options
for cropping, rotating, and rescaling the volume are also included.


import timeit
import algotom.io.loadersaver as losa
import algotom.post.postprocessing as post

output_base = "E:/output/reslicing"

# Reslice the volume along axis 1, including rotating, cropping, and rescaling to 8-bit data.
# Input is tif, output is tif
tif_folder = "E:/full_reconstruction/recon_001"
folder_name = losa.make_folder_name(output_base)  # To avoid overwriting
output = output_base + "/" + folder_name + "/"
t_start = timeit.default_timer()

post.reslice_dataset(tif_folder, output, rescaling=True, rotate=10.0,
                     nbit=8, axis=1, crop=(100, 100, 200, 200, 200, 200),
                     chunk=60, show_progress=True, ncore=None)

# # Input is hdf, output is tif. It's possible to slice a hdf volume directly
# # along axis 2 but it will be extremely slow. Better use the Algotom function as below.
#
# file_path = "E:/full_reconstruction/recon_002/recon_data.hdf"
# key_path = "entry/data"
# post.reslice_dataset(file_path, output, key_path=key_path, rescaling=True,
#                      rotate=0.0, nbit=16, axis=2, crop=(100, 100, 200, 200, 200, 200),
#                      chunk=60, show_progress=True, ncore=None)

t_stop = timeit.default_timer()
print("Done reslicing! Time cost {}".format(t_stop - t_start))








As shown below, reslicing along the direction perpendicular to the missing wedge can produce high-quality images
suitable for post-analysis.


[image: ../../_images/img_4_5_10.jpg]






4.5.9. Common mistakes and useful tips


	We may see black images when using viewer software that does not support 32-bit tif images. Users need to use
ImageJ [https://imagej.net/ij/download.html] or Fiji [https://imagej.net/software/fiji/downloads]
to view 32-bit tif reconstructed slices or flat-field-corrected images.

[image: ../../_images/img_4_5_11.jpg]


	Black reconstructed slice is returned due to the zero division problem. Reconstruction methods in Algotom apply
the logarithm function to a sinogram by default, based on Beer-Lambert’s law. However, this can result in NaN values
if there are zeros or negative values in the sinogram. Zeros or negative values may comes from phase-retrieved images or
the flat-field correction process using projection images which may have the following:



	Time stamp [https://areadetector.github.io/master/ADCore/NDPluginOverlay.html?highlight=time%20stamp] at one of the image corner.


	Beam size is smaller [https://opg.optica.org/viewmedia.cfm?uri=oe-23-25-32859&figure=oe-23-25-32859-g002&imagetype=full] than the field of view.


	Low signal-to-noise ratio [https://tomobank.readthedocs.io/en/latest/_images/tomo_00031.png].







To address these issues, there are several ways:



	Disable the logarithm function by setting apply_log to False in a reconstruction method if the input
is a non-absorption-contrast image.


	Crop the images to exclude problematic regions.


	Not using dark-field image for low SNR data.


	Replace zeros and negative values in the sinogram as below


import numpy as np
nmean = np.mean(sinogram)
sinogram[sinogram<=0.0] = nmean















Algotom provides a convenient method [https://algotom.readthedocs.io/en/latest/toc/api/algotom.prep.correction.html#algotom.prep.correction.flat_field_correction]
for flat-field correction; with the options to correct zero division, not use dark-field image, or include other preprocessing methods.



	Users may apply methods on the wrong space or slice data along incorrect axis. As shown in Fig. 4.5.1, it is assumed
that the sample is upright, and therefore the rotation axis is parallel to the columns of the projection image. In 3D data,
axis 0 represents the projection space; axis 1 represents the sinogram space and the reconstruction space. It is
important to ensure that methods are applied correctly to the appropriate space and that data is sliced along the correct axis.
Sometimes the rotation axis of a tomography system may be parallel to the rows of the projection image. In such cases,
users need to rotate the projection image or adjust the slicing direction to obtain the sinogram image.


	Cupping artifacts or outermost bright/dark ring artifacts can occur when padding is not used or wrong type of padding is used
for Fourier-based reconstruction methods. This problem has a significant impact on post-analysis, particularly image segmentation,
but very easy to fix simply by applying a proper padding such as ‘edge’, ‘reflect’, or ‘symmetric’ [https://numpy.org/doc/stable/reference/generated/numpy.pad.html#numpy.pad].
In Algotom, ‘edge’ padding is enabled by default for FFT-based methods, but in other software this function may not be enabled by default
or zero-padding is used. The following image demonstrates the difference between using zero padding and edge padding for the gridrec method.

import tomopy
import algotom.io.loadersaver as losa
import algotom.prep.calculation as calc
import algotom.rec.reconstruction as rec

center = calc.find_center_vo(sinogram)
# Algotom wrapper provides edge-padding.
rec_img1 = rec.gridrec_reconstruction(sinogram, center, ratio=None)
# Tomopy applies zero-padding by default.
rec_img2 = tomopy.recon(np.expand_dims(sinogram, 1),
                        np.deg2rad(np.linspace(0, 180.0, sinogram.shape[0])),
                        center=center, algorithm="gridrec")

losa.save_image(output_base + "/gridrec_edge_padding.tif", rec_img1)
losa.save_image(output_base + "/gridrec_zero_padding.tif", rec_img2[0])
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and demonstration for the FBP method:

import algotom.io.loadersaver as losa
import algotom.prep.calculation as calc
import algotom.rec.reconstruction as rec

center = calc.find_center_vo(sinogram)
# Using built-in FBP method in Algotom with edge padding.
rec_img1 = rec.fbp_reconstruction(sinogram, center, ratio=None)
# Using FBP through Astra Toolbox. Astra applies zero-padding behind the scene.
# The Algotom wrapper provides edge-padding in addition to Astra's zero-padding.
# However, the artifacts caused by the zero-padding can still persist, as it
# disrupts the intensities at the boundaries, which is problematic for
# Fourier-based methods.
rec_img2 = rec.astra_reconstruction(sinogram, center, ratio=None, method="FBP_CUDA", pad=0)

losa.save_image(output_base + "/FBP_edge_padding.tif", rec_img1)
losa.save_image(output_base + "/FBP_zero_padding.tif", rec_img2)
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	Users may not be aware of autoscaling implemented by image viewer software. Image viewers often apply autoscaling
to account for differences in intensity range between different image types, such as 32-bit, 16-bit or 8-bit. However,
this can lead to the displayed image having a contrast that does not accurately reflect the true contrast of the
original image. The following shows examples of using the ImageJ software.

Commonly, users may select a ROI and adjust the contrast of the image by autoscaling as shown below. An autoscaling
method works by normalizing the whole image based on the local minimum gray-scale and local maximum gray-scale of the ROI.
As can be seen, the left-side image is more noisy and has a higher dynamic range of intensities (distance between the
maximum intensity and minimum intensity) compared to the right-side image. When the auto-scaling is applied, the contrast
of the right-side image is improved because it has lower dynamic range.


[image: ../../_images/img_4_5_14.png]



The following images shows the intensity profiles along the red lines in each image where the whole dynamic range of
intensities are used to plot.


[image: ../../_images/img_4_5_15.png]



The following images show the intensity profiles along the red lines in each image where the dynamic range of
intensities is set to be the same in both images. As can be seen, the gray-scale values of an Aluminum sphere are
the same. Note that the intensities at the interfaces are strongly fluctuating due to the coherent effect of the
X-ray source.
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The above demonstration actually shows images reconstructed without and with Paganin filter (R=400), which was used
to explain the common misconception that the resulting Paganin filter image is a phase-contrast image. From a
mathematical point of view, Paganin’s formula is a low-pass filter [https://opg.optica.org/oe/fulltext.cfm?uri=oe-29-12-17849&id=451366#articleEquations]
in Fourier space, with R as a tuning parameter that controls the strength of this filter. As a low-pass filter, it
reduces noise and the dynamic range of an image, which can help enhance the contrast between low-contrast features.
However, this can sometimes be confused with the phase effect, leading to the common misconception that the resulting
image is a phase-contrast image.



	Overlapping parallelization should be avoided as it can degrade performance. Many functions in Algotom are set to
use multi-core by default. If users would like to write a wrapper on top to perform parallel work, such as processing
multiple datasets, making sure that the ncore option in Algotom API is set to 1.


	There are different ways of applying pre-processing methods to multiple-sinograms as shown below.

Using with flat-field correction method:


import algotom.util.utility as util
import algotom.prep.correction as corr
import algotom.prep.removal as remo
import algotom.prep.filtering as filt

opt1 = {"method": "remove_zinger", "para1": 0.08, "para2": 1}
opt2 = {"method": "remove_all_stripe", "para1": 3.0, "para2": 51, "para3": 17}
opt3 = {"method": "fresnel_filter", "para1": 200, "para2": 1}
sinograms = corr.flat_field_correction(proj_obj[:, 20:40, :], flat_field[20:40, :], dark_field[20:40, :],
                                       option1=opt1, option2=opt2, option3=opt3)








Applying methods one-by-one:


sinograms = corr.flat_field_correction(proj_obj[:, 20:40, :], flat_field[20:40, :], dark_field[20:40, :])
sino_pro = []
for i in range(sinograms.shape[1]):
    sino_tmp = remo.remove_zinger(sinograms[:, i, :], 0.08, 1)
    sino_tmp = remo.remove_all_stripe(sino_tmp, 3.0, 51, 17)
    sino_tmp = filt.fresnel_filter(sino_tmp, 200, 1)
    sino_pro.append(sino_tmp)
# Convert results which is a Python list to a Numpy array and
# make sure axis 1 is corresponding to sinogram.
sinograms = np.moveaxis(np.asarray(sino_pro), 0, 1)








Applying methods in parallel manually:


import multiprocessing as mp
from joblib import Parallel, delayed

ncore = mp.cpu_count() - 1
sinograms = corr.flat_field_correction(proj_obj[:, 20:40, :], flat_field[20:40, :], dark_field[20:40, :])
num_sino = sinograms.shape[1]

output_tmp = Parallel(n_jobs=ncore, prefer="threads")(delayed(
    remo.remove_zinger)(sinograms[:, j, :], 0.08, 1) for j in range(num_sino))
sinograms = np.moveaxis(np.asarray(output_tmp), 0, 1)

output_tmp = Parallel(n_jobs=ncore, prefer="threads")(delayed(
    remo.remove_all_stripe)(sinograms[:, j, :], 3.0, 51, 21) for j in
                                                      range(num_sino))
sinograms = np.moveaxis(np.asarray(output_tmp), 0, 1)

output_tmp = Parallel(n_jobs=ncore, prefer="threads")(delayed(
    filt.fresnel_filter)(sinograms[:, j, :], 200, 1) for j in range(num_sino))
sinograms = np.moveaxis(np.asarray(output_tmp), 0, 1)








Applying methods in parallel using Algotom API:


sinograms = corr.flat_field_correction(proj_obj[:, 20:40, :], flat_field[20:40, :], dark_field[20:40, :])
sinograms = util.apply_method_to_multiple_sinograms(sinograms, "remove_zinger", [0.08, 1],
                                                    ncore=None, prefer="threads")
sinograms = util.apply_method_to_multiple_sinograms(sinograms, "remove_all_stripe", [3.0, 51, 17],
                                                    ncore=None, prefer="threads")
sinograms = util.apply_method_to_multiple_sinograms(sinograms, "fresnel_filter", [200, 1],
                                                    ncore=None, prefer="threads")








Starting from version 1.3, Algotom’s reconstruction methods support batch processing of multiple sinograms at once.
It is important to note that the axis of the reconstructed slices is 1, which is similar to the axis used for
extracting sinograms.



	Padding must be used for any Fourier-based image processing method, not just reconstruction as demonstrated in tip 5,
to reduce/remove side-effect artifacts. Without padding, well-used Fourier-based filters, such as Paganin filter or
Fresnel filter, applied on projection images can produce barrel-shaped intensity profiles in reconstructed images


[image: ../../_images/img_4_5_17.jpg]



or ghost features in the top and bottom slices caused by cross-shaped artifacts in the frequency domain due to spectral leakage.


[image: ../../_images/img_4_5_18.jpg]





	In some cases, a tomography system may not be well-aligned, resulting in a rotation axis that is not perpendicular to
the rows of projection images. The angle of misalignment can be very small and difficult to detect or calculate using
projection images alone. A more accurate method involves extracting sinograms at the top, middle, and bottom of the
tomographic data (or more, to improve the fitting result later), calculating the center of rotation, and then applying
a linear fit to the results to obtain the tilt angle of the rotation axis.


import numpy as np
import algotom.io.loadersaver as losa
import algotom.prep.correction as corr
import algotom.prep.calculation as calc
import algotom.rec.reconstruction as rec

file_path = "E:/Tomo_data/scan_68067.hdf"
output_base = "E:/output/tilted_projection/"
proj_path = "entry/projections"  # Refer section 1.2.1 to know how to get
                                 # path to a dataset in a hdf file.
flat_path = "entry/flats"
dark_path = "entry/darks"

# Load data, average flat and dark images
proj_obj = losa.load_hdf(file_path, proj_path)  # hdf object
(depth, height, width) = proj_obj.shape
flat_field = np.mean(np.asarray(losa.load_hdf(file_path, flat_path)), axis=0)
dark_field = np.mean(np.asarray(losa.load_hdf(file_path, dark_path)), axis=0)

# Find center at different height for calculating the tilt angle
slice_and_center = []
for i in range(10, height-10, height // 2 - 11):
    print("Find center at slice {}".format(i))
    sinogram = corr.flat_field_correction(proj_obj[:, i,:], flat_field[i], dark_field[i])
    center = calc.find_center_vo(sinogram)
    print("Center is {}".format(center))
    slice_and_center.append([i, center])
slice_and_center = np.asarray(slice_and_center)

# Find the tilt angle using linear fit.
# Note that the sign of the tilt angle need to be changed if the projection
# images are flipped left-right or up-down by some detectors.
tilt_angle = -np.rad2deg(np.arctan(
    np.polyfit(slice_and_center[:, 0], slice_and_center[:, 1], 1)[0]))
print("Tilt angle: {} (degree)".format(np.deg2rad(tilt_angle)))

# Given tilted angle we can extract a single sinogram for reconstruction:
idx = height // 2
sino_tilted = corr.generate_tilted_sinogram(proj_obj, idx, tilt_angle)
flat_line = corr.generate_tilted_profile_line(flat_field, idx, tilt_angle)
dark_line = corr.generate_tilted_profile_line(dark_field, idx, tilt_angle)
sino_tilted = corr.flat_field_correction(sino_tilted, flat_line, dark_line)
center = calc.find_center_vo(sino_tilted)
rec_img = rec.fbp_reconstruction(sino_tilted, center)
losa.save_image(output_base + "/recon.tif", rec_img)
# or for a chunk of sinogram:
start_idx = 20
stop_idx = 40
sinos_tilted = corr.generate_tilted_sinogram_chunk(proj_obj, start_idx, stop_idx, tilt_angle)
flats_tilted = corr.generate_tilted_profile_chunk(flat_field, start_idx, stop_idx, tilt_angle)
darks_tilted = corr.generate_tilted_profile_chunk(dark_field, start_idx, stop_idx, tilt_angle)
sinos_tilted = corr.flat_field_correction(sinos_tilted, flats_tilted, darks_tilted)
center = calc.find_center_vo(sinos_tilted[:, start_idx, :])
recs_img = rec.fbp_reconstruction(sinos_tilted, center)
for i in range(start_idx, stop_idx):
    name = ("0000" + str(i))[-5:]
    losa.save_image(output_base + "/recon/recon_" + name + ".tif", recs_img[:, i-start_idx, :])










	For increasing the field of view of the reconstructed image, the technique of 360-degree scan with offset rotation axis,
also known as half-acquisition (though this can be a confusing name), is commonly used. However, it is important to
note that the rotation axis should be shifted to the side of the field of view, not the sample itself. From
the projection image, it can be confusing as both shifts give the same results.


[image: ../../_images/img_4_5_19.png]



but it’s much easier to understand using the sketch below


[image: ../../_images/img_4_5_20.png]










4.5.10. Data analysis

After cleaning and reconstructing all slices, the next step is to analyze the data to answer scientific questions.
There are a variety of tools and software available to users. For beginners, the following resources may be helpful:


	For learning about the quantitative information that X-ray tomography can provide, a good starting point is
the paper “Quantitative X-ray tomography” [https://doi.org/10.1179/1743280413Y.0000000023] by E. Maire and P.J. Withers.
This resource can provide a comprehensive overview of the field and help you understand the potential applications
and benefits of this technique.


	Tutorials on YouTube are one of the most effective ways to learn quickly:


	Rigaku virtual workshop: talk 1 [https://www.youtube.com/watch?v=8nd3QsWwOiY], talk 2 [https://www.youtube.com/watch?v=vr3mgQRqy08].


	Microscopy Australia channel: example talk [https://www.youtube.com/watch?v=Tf83MYmaivo].


	Cscsch channel: example talk [https://www.youtube.com/watch?v=rdwKCvBK85g].


	Channel of Dr. Sreenivas Bhattiprolu: tutorial playlists [https://www.youtube.com/@DigitalSreeni/playlists].
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5.1. Implementations of X-ray speckle-based phase-contrast tomography

From version 1.1, methods for speckle-based phase contrast imaging have been implemented into
Algotom. This is the result of the collaboration between the author, Nghia Vo, and his
collaborators: Hongchang Wang, Marie-Christine Zdora, Lingfei Hu, and Tunhe Zhou; who are
experienced with developing and using speckle-based imaging methods. This technical note
is to summarize the work done (for more detail, see [R22]).


5.1.1. Introduction

When a sample interacts with a coherent X-ray beam, it will cause reduction in the intensity
and change in the direction of the beam. The latter effect comes from the phase shift of the
X-ray wave. Using the first effect to image samples in tomography, known as X-ray absorption-contrast
tomography, is a widely used technique. However, using the second effect for imaging samples
is much more challenging in practice. The resulting images, i.e. phase-shift images,
can be used for tomography to visualize internal features of samples having small differences in
densities at high contrast quality. This is the advantage of the technique, known as X-ray
phase-contrast tomography (X-PCT), over conventional X-ray tomography.

To retrieve a phase-shift image, there are two basic approaches: measuring change in the
direction of a beam then performing surface reconstruction; or matching a wave-propagation model
to measured intensities. Speckle-based techniques [https://doi.org/10.1038/nphys837] use the
first approach. They are very simple to use in terms of set-up, data acquisition, and data processing.
The idea of the techniques is to measure the shift of each speckle-image pixel, caused by a sample,
by comparing the images with and without the sample. Because the speckle-pattern size is larger
than the pixel-size of a detector, to resolve the shift for each pixel we use a stack of speckle-images
scanned at different positions, with and without sample, and analyze the images using a small window
around each pixel.




5.1.2. Data acquisition

For producing a random speckle-pattern, a diffuser made of a sandpaper can be used. The purpose of
a diffuser is to provide a reference-image used to detect local displacements caused by a sample.
It is crucial to get a high-contrast reference-image with the average feature size of a few pixels, e.g. 5-9 pixels.
A reference-image with the visibility, calculated as the ratio between the standard deviation value and
the mean value of pixel intensities, above 10% is good enough for use. For high-energy X-ray sources,
users can stack sandpapers together or using a box of material powder to improve the contrast of a
speckle-image. Other practical considerations for setting up an experiment are as follows:


[image: ../../_images/img_5_1_1.png]




	The diffuser can be positioned before or after a sample depending on experiment conditions. For example,
in a parallel-beam system with a highly spatial-coherent source the diffuser can be placed closer to
the source than the sample to make use of the edge-enhancement effect which helps to improve
the contrast of the speckle-image.


	The sample-detector distance should be chosen as a compromise between increasing the displacement
effect and reducing the edge-enhancement effect caused by highly spatial-coherent sources.


	There are different ways of shifting a diffuser and acquiring a tomogram at each position. However, using
a spiral path has been proven to be practical and efficient [R25].
The distance between two speckle positions should be larger than the analysis window, e.g. 5-11 pixels,
to ensure that each speckle-pattern in the analysis window is completely different. This improves the
robustness of methods measuring pixel shifts. Using this acquisition scheme, 20 positions of a diffuser
is enough to retrieve a high-quality phase-shift image. However, for tomography systems with fluctuating
sources, higher number of positions, e.g. 30-50, is needed.


	Due to mechanical error, moving a sample in and out of the field-of-view repeatedly for each diffuser
position can cause small shifts between the same projections of different tomograms. This problem has
a significant impact to the quality of processed data and is difficult to correct. To avoid it, the best
scanning approach is to scan all positions of a diffuser first, then collect tomograms of a sample at each
diffuser position. This approach may result in small displacements between the same speckle positions due
to mechanical error. However, it is correctable by image alignment using a small area of empty space within
the sample image.







5.1.3. Data processing


5.1.3.1. Finding pixel shifts

The core idea of the technique is to find the shift of each pixel of a speckle-image caused by a sample.
This is done by: selecting a small window (5-11 pixels) around each pixel of the sample-stack image; sliding
this window around a slightly larger window (margin ~10 pixels) taken from the reference-stack image and
calculating the cost function [R25] or the correlation coefficient [R2] between
two windows at each position. The resulting correlation-coefficient/cost-function map is used to locate the
maximum/minimum point where sub-pixel accuracy can be achieved by using a differential approach or a polynomial
fitting approach. The shift of a pixel is the distance from the maximum/minimum point to the center of the map.
The procedure of finding the shift of each pixel is depicted in Fig. 5.1.1.

Performing 2D searching for every pixel of a 2k×2k image is computationally very expensive which is why
using multicore-CPU and GPU for computing is crucially needed. An approximate approach to reduce the
computational cost is to perform 1D search [R24] using middle slices in vertical and horizontal
direction of image stacks, to find shifts in x and y-direction separately.



[image: ../../_images/fig_5_1_1.jpg]
Fig. 5.1.1 Demonstration of how to find the shift of each speckle-pixel.









5.1.3.2. Surface reconstruction

The result of the previous step is separated into an x-shift image and a y-shift image, i.e. gradient images.
A phase-shift image is then retrieved by applying a method of surface reconstruction, or normal integration
(Fig. 5.1.2). There are many available options for implementing this step. However, Fourier-transform-based
methods [R7, R15] are preferred over least-squares methods due to their low computational
cost which is critical for tomography. The disadvantage of these Fourier methods is that the DC-component (average value of an image)
is undefined resulting in the fluctuations in background between phase-retrieved images. This effect, however,
can be corrected (Fig. 5.1.3) by using the double-wedge filter as described in [C1]



[image: ../../_images/fig_5_1_2.jpg]
Fig. 5.1.2 Phase-shift image (c) is retrieved by normal integration using two gradient
images: (a) x-direction; (b) y-direction.




[image: ../../_images/fig_5_1_3.jpg]
Fig. 5.1.3 (a) Fluctuation of grayscale values in a sinogram caused by the FT-based surface-reconstruction
method. (b) Corrected image after using the double-wedge filter.









5.1.3.3. Extracting transmission and dark-field signals

Another interesting capability of the speckle-based technique is that transmission image
(absorption-contrast image) and dark-field image (small-angle scattering signal, not to be confused
with dark-noise of a camera) can be extracted from data together with the phase-shift image (Fig. 5.1.4).
There are several ways [https://doi.org/10.3390/jimaging4050060] to determine dark-signal image for correlation-based methods.
For the cost-based approach [R25], dark-signal image is easily to be obtained as a part of the model
equation.



[image: ../../_images/fig_5_1_4.jpg]
Fig. 5.1.4 All imaging signal retrieved by the speckle-based technique can be used for tomography. (a) Phase-shift image.
(b) Transmission image. (c) Dark-field image.









5.1.3.4. Tomographic reconstruction

Above processing steps are repeated for every projection then the results are used for tomographic
reconstruction as shown in Fig. 5.1.5



[image: ../../_images/fig_5_1_5.jpg]
Fig. 5.1.5 Demonstration of the speckle-based phase-contrast tomography











5.1.4. Implementation


5.1.4.1. Design principles

Practical design-principles have been followed in the implementation:


	To ensure that the software can work across platforms and is easy-to-install; dependencies are minimized,
and only well-maintained Python libraries are used.


	For high performance computing, making use of GPU, but ease of understanding and use; Numba library is used instead
of Cupy or PyCuda.


	Methods are broken down into building blocks to be able to run on either small or large memory RAM/GPU.
More importantly, this design allows users to customize methods or build data processing pipeline.




Top layer methods, API reference, for the software are as follows:


	Reading images from multiple datasets, in tif or hdf format, and stacking them.


	Finding local shifts between two images or two stacks of images.


	Performing surface reconstruction from gradient images.


	Retrieving phase-shift image given two stacks of images.


	Extracting transmission image and dark-field image.


	Aligning two images or two stacks of images.







5.1.4.2. Building blocks

A dedicated module in Algotom, named correlation [https://github.com/algotom/algotom/blob/master/algotom/util/correlation.py],
is a collection of methods as the building blocks for the top layer methods described in the previous section.

The first block is a method to generate correlation-coefficient map between two 2D/3D images (Fig. 5.1.1).
This is the core method to find the shift between images. It works by sliding the second image over the reference
image and calculating the correlation coefficient at each position. There are many formulas to calculate this
coefficient. Here, we use Pearson’s coefficient [https://en.wikipedia.org/wiki/Pearson_correlation_coefficient]
as it has been proven to be one of the most reliable metrics. The method includes low-level implementations for
specific cases: 2D or 3D input, using CPU or GPU.

The second block is a method to locate the maximum/minimum point of a correlation-coefficient/cost-function map
with sub-pixel accuracy where there are two approaches selected: either a differential approach [R6]
or a polynomial fitting approach [R3]. At low-level are implementations to handle different cases: 1D
or 2D input, using the differential method or fitting method.

The above blocks are for finding the shift of each pixel using a small window around it. This operation is
applied to ~ 2k × 2k pixel. In practice, input data for retrieving a phase-shift image is two stacks of images;
each stack is around 20 images (20 speckle-positions); each image has a size of 2k × 2k. Total shape of the input
is 2 × 20 × 2k × 2k with the size of ~300MB (16-bit image). As can be seen, many strategies can be used to
parallelize workload. Here we find that processing data using chunk-by-chunk of image-rows in one go and
calculating the shifts row-by-row in parallel is the most efficient way in term of memory management, performance,
and code readability.

As mentioned above, the next building block is a method for finding the shift of each pixel in a chunk of
image-rows in parallel. The method includes low-level implementations for different cases: 1D or 2D search, 2D or
3D input, CPU or GPU computing. For GPU, to reduce the overhead of transferring data and compiling functions,
the first two blocks are implemented at GPU-kernel level.

The top building block is a method for processing full-size images [https://algotom.readthedocs.io/en/latest/toc/api/algotom.prep.phase.html#algotom.prep.phase.retrieve_phase_based_speckle_tracking].
It includes many options for processing at the lower-level blocks. The chunk-size option enables the method to run on
either small memory or large memory of RAM or GPU. Other top-layer methods listed in the previous section are
straightforward to implement either directly or by making use of the methods in the correlation module.



[image: ../../_images/fig_5_1_6.png]
Fig. 5.1.6 Building blocks of the correlation module.











5.1.5. Demonstration



[image: ../../_images/fig_5_1_7.jpg]
Fig. 5.1.7 Speckle-based tomographic experiment at beamline I12.






Data collected at beamline I12 [https://www.diamond.ac.uk/Instruments/Imaging-and-Microscopy/I12/Techniques-at-I12.html]
at Diamond Light Source are used for demonstration. Details of how data were acquired are as follows:


	A box of fine sand was used as a speckle generator and can achieve a visibility of 13% at 53keV X-rays with the
detector-sample distance of 2.2m. A detector with the pixel size of 7.9 µm was used. Image-size is 2560 and 2160
in height and width. The speckle-size is around 8 pixels. The intensity of the beam profile is very stable which
is an important advantage of beamline I12. The sample is a picrite basaltic rock [https://doi.org/10.1016/j.epsl.2018.04.025]
from Iceland.


	20 speckle positions following a spiral path [https://algotom.readthedocs.io/en/latest/toc/api/algotom.util.utility.html#algotom.util.utility.generate_spiral_positions]
with the step of 30 times of the pixel size were used for scanning.


	Speckle images without the sample were acquired at all positions first. Then for each speckle position a
tomographic scan of the sample, 1801 projections, was acquired. This strategy ensures that projections at
the same angle are not shifted between speckle positions. Due to mechanical error, the diffuser positions
were not the same between the first scan (without the sample) and the second scan (with the sample).
This problem can be solved by image alignment [https://algotom.readthedocs.io/en/latest/toc/api/algotom.prep.phase.html#algotom.prep.phase.find_shift_between_image_stacks]
using free-space areas in each image (Fig. 5.1.8).



[image: ../../_images/fig_5_1_8.jpg]
Fig. 5.1.8 Demonstration of the impact of image alignment. (a) Small area of an image which is the result of dividing
between speckle-image with sample and without sample. (b) Same as (a) but after image alignment.










The following presents how the data were processed:


	Reference-images for each position are loaded, averaged, normalized (flat-field corrected), aligned [https://algotom.readthedocs.io/en/latest/toc/api/algotom.prep.phase.html#algotom.prep.phase.align_image_stacks],
and stacked.


	For each angle of tomographic datasets, projections at different speckle-positions are loaded, normalized, and stacked.


	Phase-shift image is retrieved from two previous image-stacks (Fig. 5.1.9) using a single function.
Full options for choosing back-end methods, surface reconstruction methods, and searching parameters are at
the API reference page [https://algotom.readthedocs.io/en/latest/toc/api/algotom.prep.phase.html#algotom.prep.phase.retrieve_phase_based_speckle_tracking].


[image: ../../_images/fig_5_1_9.jpg]
Fig. 5.1.9 Speckle-image stack (a). Sample-image stack (b). Phase-shift image (c) retrieved from (a) and (b).







Algotom implements three approaches: the correlation-based method using 1D [R24] and 2D [R2] search,
and the cost-based approach [R25], known as the UMPA (Unified Modulated Pattern Analysis) method.
A summary of computing time for retrieving a single phase-shift image using different options is shown
in Fig. 5.1.10 where the window size is 7 and the margin is 10. As can be seen, there is a huge
speed-up of computing time if using GPU.



[image: ../../_images/fig_5_1_10.jpg]
Fig. 5.1.10 Comparison of computing time using different approaches.






For tomographic reconstruction, phase retrieval is applied to all projections then the sinograms are generated
for reconstructing slice-by-slice. This step can be manually parallelized for multiple-CPUs or multiple-GPUs to
reduce computing time. In practice, users may want to tweak parameters and check the results before running full
reconstruction. This can be done by performing phase retrieval on a small area of projection-images.

Fig. 5.1.11 shows reconstructed images in horizontal and vertical direction from the three approaches
where ring artifact removal methods [R10, R19] and the FBP reconstruction method were used. There
are several interesting findings from the results. Firstly, the 1D-search method gives less-sharp images than
other methods but with better contrast and clearer features. There is not much different between the 2D-search
method and the UMPA method out of the low-pass component. However, the main advantage of the UMPA approach over
the others is that three modes of image can be retrieved at the same time as shown in Fig. 5.1.12.
This figure is also a showcase for the speckle-based tomography technique where phase-shift images give
better contrast than transmission-signal images (red arrows). The technique reveals interesting features
of the sample which are mineral olivine. Because the olivine is a crystal it can enhance dark signal as
shown in Fig. 5.1.12 (c,f). Making use of dark-signal images to gain deeper understanding of materials
is a very promising application of the technique.



[image: ../../_images/fig_5_1_11.jpg]
Fig. 5.1.11 Horizontal slice and vertical slice of reconstructed volumes from the 3 approaches: the 1D-search method (a,d);
the 2D-search method (b,e); and UMPA (c,f).




[image: ../../_images/fig_5_1_12.jpg]
Fig. 5.1.12 Horizontal slice and vertical slice of reconstructed volumes from 3 imaging modes: phase-shift image (a,d);
transmission image (b,e); and dark-signal image (c,f).






Python codes used to process data for this report are at here [https://github.com/algotom/algotom/tree/master/examples/speckle_based_tomography/i12_data].
Detailed references can be found in [R22].







            

          

      

      

    

  

    
      
          
            
  
6. Update notes


	13/05/2021:



	Publish codes.









	26/01/2022:



	Add phase.py module.


	Add phase-unwrapping methods.









	20/06/2022:



	Add correlation.py module.


	Add methods for speckle-based phase-contrast tomography.


	Add methods for image alignment.


	Release version 1.1.









	27/06/2022:



	Publish https://algotom.github.io/









	20/10/2022:



	Publish implementation of the UMPA method.









	24/10/2022:



	Release version 1.2.









	03/02/2023:



	Add reslicing 3D-data method. Increase code coverage.









	25/03/2023:



	Add upsampling sinogram method.


	Add method for finding the center of rotation (COR) using the entropy-based metric.


	Add utility methods for visually finding the COR using: converted 360-degree sinograms and reconstructed slices.


	Improve reconstruction methods to process multiple-sinograms.









	30/03/2023:



	Improve the performance of the reslicing method.


	Release version 1.3.









	19/11/2023:



	Add methods for loading and saving multiple tiff images in parallel.


	Release version 1.4.









	24/03/2024:



	Add calibration methods for tomography alignment.


	Release version 1.5









	26/04/2024:



	Add back-projection filtering (BPF) method.















            

          

      

      

    

  

    
      
          
            
  
7. API Reference


7.1. Input-output



	7.1.1. algotom.io.converter

	7.1.2. algotom.io.loadersaver








7.2. Pre-processing



	7.2.1. algotom.prep.calculation

	7.2.2. algotom.prep.conversion

	7.2.3. algotom.prep.correction

	7.2.4. algotom.prep.filtering

	7.2.5. algotom.prep.removal

	7.2.6. algotom.prep.phase
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7.1.1. algotom.io.converter

Module for converting data type:



	Convert a list of tif files to a hdf/nxs file.


	Extract tif images from a hdf/nxs file.







Functions:







	convert_tif_to_hdf(input_path, output_path)

	Convert a folder of tif files to a hdf/nxs file.



	extract_tif_from_hdf(input_path, ...[, ...])

	Extract tif images from a hdf/nxs file.







	
algotom.io.converter.convert_tif_to_hdf(input_path, output_path, key_path='entry/data', crop=(0, 0, 0, 0), pattern=None, **options)

	Convert a folder of tif files to a hdf/nxs file.


	Parameters

	
	input_path (str) – Folder path to the tif files.


	output_path (str) – Path to the hdf/nxs file.


	key_path (str, optional) – Key path to the dataset.


	crop (tuple of int, optional) – Crop the images from the edges, i.e.
crop = (crop_top, crop_bottom, crop_left, crop_right).


	pattern (str, optional) – Used to find tif files with names matching the pattern.


	options (dict, optional) – Add metadata. E.g options={“entry/angles”: angles, “entry/energy”: 53}.






	Returns

	str – Path to the hdf/nxs file.










	
algotom.io.converter.extract_tif_from_hdf(input_path, output_path, key_path, index=(0, -1, 1), axis=0, crop=(0, 0, 0, 0), prefix='img')

	Extract tif images from a hdf/nxs file.


	Parameters

	
	input_path (str) – Path to the hdf/nxs file.


	output_path (str) – Output folder.


	key_path (str) – Key path to the dataset in the hdf/nxs file.


	index (tuple of int or int.) – Indices of extracted images. A tuple corresponds to (start,stop,step).


	axis (int) – Axis which the images are extracted.


	crop (tuple of int, optional) – Crop the images from the edges, i.e.
crop = (crop_top, crop_bottom, crop_left, crop_right).


	prefix (str, optional) – Prefix of names of tif files.






	Returns

	str – Folder path to the tif files.













            

          

      

      

    

  

    
      
          
            
  
7.1.2. algotom.io.loadersaver

Module for I/O tasks:



	Load data from an image file (tif, png, jpeg) or a hdf/nxs file.


	Get information from a hdf/nxs file.


	Search for datasets in a hdf/nxs file.


	Save a 2D array as a tif image or 2D, 3D array to a hdf/nxs file.


	Get file names, make file/folder name.


	Load distortion coefficients from a txt file.


	Get the tree view of a hdf/nxs file.


	Functions for loading stacks of images from multiple datasets, e.g. to
be used by speckle-based phase contrast tomography.







Functions:







	load_image(file_path)

	Load data from an image.



	get_hdf_information(file_path[, display])

	Get information of datasets in a hdf/nxs file.



	find_hdf_key(file_path, pattern[, display])

	Find datasets matching the name-pattern in a hdf/nxs file.



	load_hdf(file_path, key_path[, return_file_obj])

	Load a hdf/nexus dataset as an object.



	make_folder(file_path)

	Create a folder for saving file if the folder does not exist.



	make_file_name(file_path)

	Create a new file name to avoid overwriting.



	make_folder_name(folder_path[, name_prefix, ...])

	Create a new folder name to avoid overwriting.



	find_file(path)

	Search file



	save_image(file_path, mat[, overwrite])

	Save a 2D array to an image.



	open_hdf_stream(file_path, data_shape[, ...])

	Write an array to a hdf/nxs file with options to add metadata.



	load_distortion_coefficient(file_path)

	Load distortion coefficients from a text file.



	save_distortion_coefficient(file_path, ...)

	Write distortion coefficients to a text file.



	get_hdf_tree(file_path[, output, add_shape, ...])

	Get the tree view of a hdf/nxs file.



	get_reference_sample_stacks_dls(proj_idx, ...)

	A method for multi-position speckle-based phase-contrast tomography to get two stacks of reference images (speckle images) and sample images (at the same rotation angle from each tomographic dataset).



	get_reference_sample_stacks(proj_idx, ...[, ...])

	Get two stacks of reference images (speckle images) and sample images (at the same rotation angle from each tomographic dataset).



	get_tif_stack(file_base[, idx, crop, ...])

	Load tif images to a stack.



	get_image_stack(idx, paths[, data_key, ...])

	To get multiple images with the same index from multiple datasets (tif format or hdf format).



	load_image_multiple(list_path[, ncore, prefer])

	Load list of images in parallel.



	save_image_multiple(list_path, image_stack)

	Save an 3D-array to a list of tif images in parallel.







	
algotom.io.loadersaver.load_image(file_path)

	Load data from an image.


	Parameters

	file_path (str) – Path to the file.



	Returns

	array_like – 2D array.










	
algotom.io.loadersaver.get_hdf_information(file_path, display=False)

	Get information of datasets in a hdf/nxs file.


	Parameters

	
	file_path (str) – Path to the file.


	display (bool) – Print the results onto the screen if True.






	Returns

	
	list_key (str) – Keys to the datasets.


	list_shape (tuple of int) – Shapes of the datasets.


	list_type (str) – Types of the datasets.















	
algotom.io.loadersaver.find_hdf_key(file_path, pattern, display=False)

	Find datasets matching the name-pattern in a hdf/nxs file.


	Parameters

	
	file_path (str) – Path to the file.


	pattern (str) – Pattern to find the full names of the datasets.


	display (bool) – Print the results onto the screen if True.






	Returns

	
	list_key (str) – Keys to the datasets.


	list_shape (tuple of int) – Shapes of the datasets.


	list_type (str) – Types of the datasets.















	
algotom.io.loadersaver.load_hdf(file_path, key_path, return_file_obj=False)

	Load a hdf/nexus dataset as an object.


	Parameters

	
	file_path (str) – Path to the file.


	key_path (str) – Key path to the dataset.


	return_file_obj (bool, optional)






	Returns

	objects – hdf-dataset object, and file-object if return_file_obj is True.










	
algotom.io.loadersaver.make_folder(file_path)

	Create a folder for saving file if the folder does not exist. This is a
supplementary function for savers.


	Parameters

	file_path (str) – Path to a file.










	
algotom.io.loadersaver.make_file_name(file_path)

	Create a new file name to avoid overwriting.


	Parameters

	file_path (str)



	Returns

	str – Updated file path.










	
algotom.io.loadersaver.make_folder_name(folder_path, name_prefix='Output', zero_prefix=5)

	Create a new folder name to avoid overwriting.
E.g: Output_00001, Output_00002…


	Parameters

	
	folder_path (str) – Path to the parent folder.


	name_prefix (str) – Name prefix


	zero_prefix (int) – Number of zeros to be added to file names.






	Returns

	str – Name of the folder.










	
algotom.io.loadersaver.find_file(path)

	Search file


	Parameters

	path (str) – Path and pattern to find files.



	Returns

	str or list of str – List of files.










	
algotom.io.loadersaver.save_image(file_path, mat, overwrite=True)

	Save a 2D array to an image.


	Parameters

	
	file_path (str) – Path to the file.


	mat (int or float) – 2D array.


	overwrite (bool) – Overwrite an existing file if True.






	Returns

	str – Updated file path.










	
algotom.io.loadersaver.open_hdf_stream(file_path, data_shape, key_path='entry/data', data_type='float32', overwrite=True, **options)

	Write an array to a hdf/nxs file with options to add metadata.


	Parameters

	
	file_path (str) – Path to the file.


	data_shape (tuple of int) – Shape of the data.


	key_path (str) – Key path to the dataset.


	data_type (str) – Type of data.


	overwrite (bool) – Overwrite the existing file if True.


	options (dict, optional) – Add metadata. E.g options={“entry/angles”: angles, “entry/energy”: 53}.






	Returns

	object – hdf object.










	
algotom.io.loadersaver.load_distortion_coefficient(file_path)

	Load distortion coefficients from a text file. The file must use the
following format:
x_center : float
y_center : float
factor0 : float
factor1 : float
…


	Parameters

	file_path (str) – Path to the file



	Returns

	tuple of float and list – Tuple of (xcenter, ycenter, list_fact).










	
algotom.io.loadersaver.save_distortion_coefficient(file_path, xcenter, ycenter, list_fact, overwrite=True)

	Write distortion coefficients to a text file.


	Parameters

	
	file_path (str) – Path to the file.


	xcenter (float) – Center of distortion in x-direction.


	ycenter (float) – Center of distortion in y-direction.


	list_fact (float) – 1D array. Coefficients of the polynomial fit.


	overwrite (bool) – Overwrite an existing file if True.






	Returns

	str – Updated file path.










	
algotom.io.loadersaver.get_hdf_tree(file_path, output=None, add_shape=True, display=True)

	Get the tree view of a hdf/nxs file.


	Parameters

	
	file_path (str) – Path to the file.


	output (str or None) – Path to the output file in a text-format file (.txt, .md,…).


	add_shape (bool) – Including the shape of a dataset to the tree if True.


	display (bool) – Print the tree onto the screen if True.






	Returns

	list of string










	
algotom.io.loadersaver.get_reference_sample_stacks_dls(proj_idx, list_path, data_key=None, image_key=None, crop=(0, 0, 0, 0), flat_field=None, dark_field=None, num_use=None, fix_zero_div=True)

	A method for multi-position speckle-based phase-contrast tomography to get
two stacks of reference images (speckle images) and sample images (at the
same rotation angle from each tomographic dataset).

The method is specific to tomographic datasets acquired at Diamond Light
Source (DLS) where projection-images, flat-field images, and dark-field
images are in the same 3d array. There is a dataset named “image_key”
inside a hdf/nxs file used to distinguish image types.


	Parameters

	
	proj_idx (int) – Index of a projection-image in a tomographic dataset.


	list_path (list of str) – List of file paths (hdf/nxs format) to tomographic datasets.


	data_key (str, optional) – Key to images. Automatically find the key if None.


	image_key (str, list, tuple, ndarray, optional) – Key to 1d-array dataset for specifying image types. Automatically
find the key if None. Can be used to pass the 1d-array manually.


	crop (tuple of int, optional) – Crop the images from the edges, i.e.
crop = (crop_top, crop_bottom, crop_left, crop_right).


	flat_field (ndarray, optional) – 2D array or None. Used for flat-field correction if not None.


	dark_field (ndarray, optional) – 2D array or None. Used for dark-field correction if not None.


	num_use (int, optional) – Number of datasets used for stacking.


	fix_zero_div (bool, optional) – Correct zeros to avoid zero-division problem down the processing line.






	Returns

	
	ref_stack (ndarray) – Return if reference-images found. 3D array.


	sam_stack (ndarray) – 3D array. A stack of sample-images.















	
algotom.io.loadersaver.get_reference_sample_stacks(proj_idx, ref_path, sam_path, ref_key, sam_key, crop=(0, 0, 0, 0), flat_field=None, dark_field=None, num_use=None, fix_zero_div=True)

	Get two stacks of reference images (speckle images) and sample images (at
the same rotation angle from each tomographic dataset). A method for
multi-position speckle-based phase-contrast tomography.


	Parameters

	
	proj_idx (int) – Index of a projection-image in a tomographic dataset.


	ref_path (list of str) – List of file paths (hdf/nxs format) to reference-image datasets.


	sam_path (list of str) – List of file paths (hdf/nxs format) to tomographic datasets.


	ref_key (str) – Key to a reference-image dataset.


	sam_key (str) – Key to a projection-image dataset.


	crop (tuple of int, optional) – Crop the images from the edges, i.e.
crop = (crop_top, crop_bottom, crop_left, crop_right).


	flat_field (ndarray, optional) – 2D array or None. Used for flat-field correction if not None.


	dark_field (ndarray, optional) – 2D array or None. Used for dark-field correction if not None.


	num_use (int, optional) – Number of datasets used for stacking.


	fix_zero_div (bool, optional) – Correct zeros to avoid zero-division problem down the processing line.






	Returns

	
	ref_stack (ndarray) – 3D array. A stack of reference-images.


	sam_stack (ndarray) – 3D array. A stack of sample-images.















	
algotom.io.loadersaver.get_tif_stack(file_base, idx=None, crop=(0, 0, 0, 0), flat_field=None, dark_field=None, num_use=None, fix_zero_div=True)

	Load tif images to a stack. Supplementary method for ‘get_image_stack’.


	Parameters

	
	file_base (str) – Folder path to tif images.


	idx (int or None) – Load single or multiple images.


	crop (tuple of int, optional) – Crop the images from the edges, i.e.
crop = (crop_top, crop_bottom, crop_left, crop_right).


	flat_field (ndarray, optional) – 2D array or None. Used for flat-field correction if not None.


	dark_field (ndarray, optional) – 2D array or None. Used for dark-field correction if not None.


	num_use (int, optional) – Number of images used for stacking.


	fix_zero_div (bool, optional) – Correct zeros to avoid zero-division problem down the processing line.






	Returns

	img_stack (ndarray) – 3D array. A stack of images.










	
algotom.io.loadersaver.get_image_stack(idx, paths, data_key=None, average=False, crop=(0, 0, 0, 0), flat_field=None, dark_field=None, num_use=None, fix_zero_div=True)

	To get multiple images with the same index from multiple datasets
(tif format or hdf format). For tif images, if “paths” is a string
(not a list) use idx=None to load all images. For getting a stack of images
from a single hdf file, use the “load_hdf” method instead.


	Parameters

	
	idx (int or None) – Index of an image in a dataset. Use None to load all images if only
one dataset provided.


	paths (list of str or str) – List of hdf/nxs file-paths, list of folders of tif-images, or a folder
of tif-images.


	data_key (str) – Requested if input is a hdf/nxs files.


	average (bool, optional) – Average images in a dataset if True.


	crop (tuple of int, optional) – Crop the images from the edges, i.e.
crop = (crop_top, crop_bottom, crop_left, crop_right).


	flat_field (ndarray, optional) – 2D array or None. Used for flat-field correction if not None.


	dark_field (ndarray, optional) – 2D array or None. Used for dark-field correction if not None.


	num_use (int, optional) – Number of datasets used for stacking.


	fix_zero_div (bool, optional) – Correct zeros to avoid zero-division problem down the processing line.






	Returns

	img_stack (ndarray) – 3D array. A stack of images.










	
algotom.io.loadersaver.load_image_multiple(list_path, ncore=None, prefer='threads')

	Load list of images in parallel.


	Parameters

	
	list_path (str) – List of file paths.


	ncore (int or None) – Number of cpu-cores. Automatically selected if None.


	prefer ({“threads”, “processes”}) – Prefer backend for parallel processing.






	Returns

	array_like – 3D array.










	
algotom.io.loadersaver.save_image_multiple(list_path, image_stack, axis=0, overwrite=True, ncore=None, prefer='threads', start_idx=0)

	Save an 3D-array to a list of tif images in parallel.


	Parameters

	
	list_path (str) – List of output paths or a folder path


	image_stack (array_like) – 3D array.


	overwrite (bool) – Overwrite an existing file if True.


	ncore (int or None) – Number of cpu-cores. Automatically selected if None.


	prefer ({“threads”, “processes”}) – Prefer backend for parallel processing.


	start_idx (int) – Starting index of the output files if input is a folder.
















            

          

      

      

    

  

    
      
          
            
  
7.2.1. algotom.prep.calculation

Module of calculation methods in the preprocessing stage:



	Calculating the center-of-rotation (COR) using a 180-degree sinogram.


	Determining the overlap-side and overlap-area between images.


	Calculating the COR in a half-acquisition scan (360-degree scan with
offset COR).


	Using the similar technique as above to calculate the COR in a
180-degree scan from two projections.


	Determining the relative translations between images using
phase-correlation technique.


	Calculating the COR using phase-correlation technique.







Functions:







	make_inverse_double_wedge_mask(height, ...)

	Generate a double-wedge binary mask using Eq.



	calculate_center_metric(center, sino_180, ...)

	Calculate a metric of an estimated center-of-rotation.



	coarse_search_cor(sino_180, start, stop[, ...])

	Find the center-of-rotation (COR) using integer shifting.



	fine_search_cor(sino_180, start, radius, step)

	Find the center-of-rotation (COR) using sub-pixel shifting.



	downsample_cor(image, dsp_fact0, dsp_fact1)

	Downsample an image by averaging.



	find_center_vo(sino_180[, start, stop, ...])

	Find the center-of-rotation using the method described in Ref.



	calculate_curvature(list_metric)

	Calculate the curvature of a fitted curve going through the minimum value of a metric list.



	correlation_metric(mat1, mat2)

	Calculate the correlation metric.



	search_overlap(mat1, mat2, win_width, side)

	Calculate the correlation metrics between a rectangular region, defined by the window width, on the utmost left/right side of image 2 and the same size region in image 1 where the region is slided across image 1.



	find_overlap(mat1, mat2, win_width[, side, ...])

	Find the overlap area and overlap side between two images (Ref.



	find_overlap_multiple(list_mat, win_width[, ...])

	Find the overlap-areas and overlap-sides of a list of images where the overlap side referring to the previous image.



	find_center_360(sino_360, win_width[, side, ...])

	Find the center-of-rotation (COR) in a 360-degree scan with offset COR use the method presented in Ref.



	complex_gradient(mat)

	Return complex gradient of a 2D array.



	find_shift_based_phase_correlation(mat1, mat2)

	Find relative translation in x and y direction between images with haft-pixel accuracy (Ref.



	find_center_based_phase_correlation(mat1, mat2)

	Find the center-of-rotation (COR) using projection images at 0-degree and 180-degree.



	find_center_projection(mat1, mat2[, flip, ...])

	Find the center-of-rotation (COR) using projection images at 0-degree and 180-degree based on a method in Ref.



	calculate_reconstructable_height(y_start, ...)

	Calculate reconstructable height in a helical scan.



	calculate_maximum_index(y_start, y_stop, ...)

	Calculate the maximum index of a reconstructable slice in a helical scan.







	
algotom.prep.calculation.make_inverse_double_wedge_mask(height, width, radius, hor_drop=None, ver_drop=None)

	Generate a double-wedge binary mask using Eq. (3) in Ref. [1].
Values outside the double-wedge region correspond to 1.0.


	Parameters

	
	height (int) – Image height.


	width (int) – Image width.


	radius (int) – Radius of an object, in pixel unit.


	hor_drop (int or None, optional) – Number of rows (2 * hor_drop) around the middle of the mask with values
set to zeros.


	ver_drop (int or None, optional) – Number of columns (2 * ver_drop) around the middle of the mask with
values set to zeros.






	Returns

	array_like – 2D binary mask.





References

[1] : https://doi.org/10.1364/OE.22.019078






	
algotom.prep.calculation.calculate_center_metric(center, sino_180, sino_flip, sino_comp, mask)

	Calculate a metric of an estimated center-of-rotation.


	Parameters

	
	center (float) – Estimated center.


	sino_180 (array_like) – 2D array. 180-degree sinogram.


	sino_flip (array_like) – 2D array. Flip the 180-degree sinogram in the left/right direction.


	sino_comp (array_like) – 2D array. Used to fill the gap left by image shifting.


	mask (array_like) – 2D array. Used to select coefficients in the double-wedge region.






	Returns

	float – Metric.










	
algotom.prep.calculation.coarse_search_cor(sino_180, start, stop, ratio=0.5, denoise=True, ncore=None, hor_drop=None, ver_drop=None)

	Find the center-of-rotation (COR) using integer shifting.


	Parameters

	
	sino_180 (array_like) – 2D array. 180-degree sinogram.


	start (int) – Starting point for searching COR.


	stop (int) – Ending point for searching COR.


	ratio (float) – Ratio between a sample and the width of the sinogram.


	denoise (bool, optional) – Apply a smoothing filter.


	ncore (int or None) – Number of cpu-cores used for computing. Automatically selected if None.


	hor_drop (int or None, optional) – Refer the method of “make_inverse_double_wedge_mask”


	ver_drop (int or None, optional) – Refer the method of “make_inverse_double_wedge_mask”






	Returns

	float – Center of rotation.










	
algotom.prep.calculation.fine_search_cor(sino_180, start, radius, step, ratio=0.5, denoise=True, ncore=None, hor_drop=None, ver_drop=None)

	Find the center-of-rotation (COR) using sub-pixel shifting.


	Parameters

	
	sino_180 (array_like) – 2D array. 180-degree sinogram.


	start (float) – Starting point for searching COR.


	radius (float) – Searching range: [start - radius; start + radius].


	step (float) – Searching step.


	ratio (float) – Ratio between a sample and the width of the sinogram.


	denoise (bool, optional) – Apply a smoothing filter.


	ncore (int or None) – Number of cpu-cores used for computing. Automatically selected if None.


	hor_drop (int or None, optional) – Refer the method of “make_inverse_double_wedge_mask”


	ver_drop (int or None, optional) – Refer the method of “make_inverse_double_wedge_mask”






	Returns

	float – Center of rotation.










	
algotom.prep.calculation.downsample_cor(image, dsp_fact0, dsp_fact1)

	Downsample an image by averaging.


	Parameters

	
	image (array_like) – 2D array.


	dsp_fact0 (int) – Downsampling factor along axis 0.


	dsp_fact1 (int) – Downsampling factor along axis 1.






	Returns

	array_like – 2D array. Downsampled image.










	
algotom.prep.calculation.find_center_vo(sino_180, start=None, stop=None, step=0.25, radius=4, ratio=0.5, dsp=True, ncore=None, hor_drop=None, ver_drop=None)

	Find the center-of-rotation using the method described in Ref. [1].


	Parameters

	
	sino_180 (array_like) – 2D array. 180-degree sinogram.


	start (float) – Starting point for searching CoR. Use the value of
(width/2 - width/16) if None.


	stop (float) – Ending point for searching CoR. Use the value of
(width/2 + width/16) if None.


	step (float) – Sub-pixel accuracy of estimated CoR.


	radius (float) – Searching range with the sub-pixel step.


	ratio (float) – Ratio between the sample and the width of the sinogram.


	dsp (bool) – Enable/disable downsampling.


	ncore (int or None) – Number of cpu-cores used for computing. Automatically selected if None.


	hor_drop (int or None, optional) – Refer the method of “make_inverse_double_wedge_mask”


	ver_drop (int or None, optional) – Refer the method of “make_inverse_double_wedge_mask”






	Returns

	float – Center-of-rotation.





References

[1] : https://doi.org/10.1364/OE.22.019078






	
algotom.prep.calculation.calculate_curvature(list_metric)

	Calculate the curvature of a fitted curve going through the minimum
value of a metric list.


	Parameters

	list_metric (array_like) – 1D array. List of metrics.



	Returns

	
	curvature (float) – Quadratic coefficient of the parabola fitting.


	min_pos (float) – Position of the minimum value with sub-pixel accuracy.















	
algotom.prep.calculation.correlation_metric(mat1, mat2)

	Calculate the correlation metric. Smaller metric corresponds to better
correlation.


	Parameters

	
	mat1 (array_like)


	mat2 (array_like)






	Returns

	float – Correlation metric.










	
algotom.prep.calculation.search_overlap(mat1, mat2, win_width, side, denoise=True, norm=False, use_overlap=False)

	Calculate the correlation metrics between a rectangular region, defined
by the window width, on the utmost left/right side of image 2 and the
same size region in image 1 where the region is slided across image 1.


	Parameters

	
	mat1 (array_like) – 2D array. Projection image or sinogram image.


	mat2 (array_like) – 2D array. Projection image or sinogram image.


	win_width (int) – Width of the searching window.


	side ({0, 1}) – Only two options: 0 or 1. It is used to indicate the overlap side
respects to image 1. “0” corresponds to the left side. “1” corresponds
to the right side.


	denoise (bool, optional) – Apply the Gaussian filter if True.


	norm (bool, optional) – Apply the normalization if True.


	use_overlap (bool, optional) – Use the combination of images in the overlap area for calculating
correlation coefficients if True.






	Returns

	
	list_metric (array_like) – 1D array. List of the correlation metrics.


	offset (int) – Initial position of the searching window where the position
corresponds to the center of the window.















	
algotom.prep.calculation.find_overlap(mat1, mat2, win_width, side=None, denoise=True, norm=False, use_overlap=False)

	Find the overlap area and overlap side between two images (Ref. [1]) where
the overlap side referring to the first image.


	Parameters

	
	mat1 (array_like) – 2D array. Projection image or sinogram image.


	mat2 (array_like) – 2D array. Projection image or sinogram image.


	win_width (int) – Width of the searching window.


	side ({None, 0, 1}, optional) – Only there options: None, 0, or 1. “None” corresponding to fully
automated determination. “0” corresponding to the left side. “1”
corresponding to the right side.


	denoise (bool, optional) – Apply the Gaussian filter if True.


	norm (bool, optional) – Apply the normalization if True.


	use_overlap (bool, optional) – Use the combination of images in the overlap area for calculating
correlation coefficients if True.






	Returns

	
	overlap (float) – Width of the overlap area between two images.


	side (int) – Overlap side between two images.


	overlap_position (float) – Position of the window in the first image giving the best
correlation metric.










References

[1] : https://doi.org/10.1364/OE.418448






	
algotom.prep.calculation.find_overlap_multiple(list_mat, win_width, side=None, denoise=True, norm=False, use_overlap=False)

	Find the overlap-areas and overlap-sides of a list of images where the
overlap side referring to the previous image.


	Parameters

	
	list_mat (list of array_like) – List of 2D array. Projection image or sinogram image.


	win_width (int) – Width of the searching window.


	side ({None, 0, 1}, optional) – Only there options: None, 0, or 1. “None” corresponding to fully
automated determination. “0” corresponding to the left side. “1”
corresponding to the right side.


	denoise (bool, optional) – Apply the Gaussian filter if True.


	norm (bool, optional) – Apply the normalization if True.


	use_overlap (bool, optional) – Use the combination of images in the overlap area for calculating
correlation coefficients if True.






	Returns

	list_overlap (list of tuple of floats) – List of [overlap, side, overlap_position].
overlap : Width of the overlap area between two images.
side : Overlap side between two images.
overlap_position : Position of the window in the first
image giving the best correlation metric.










	
algotom.prep.calculation.find_center_360(sino_360, win_width, side=None, denoise=True, norm=False, use_overlap=False)

	Find the center-of-rotation (COR) in a 360-degree scan with offset COR use
the method presented in Ref. [1].


	Parameters

	
	sino_360 (array_like) – 2D array. 360-degree sinogram.


	win_width (int) – Window width used for finding the overlap area.


	side ({None, 0, 1}, optional) – Overlap size. Only there options: None, 0, or 1. “None” corresponding
to fully automated determination. “0” corresponding to the left side.
“1” corresponding to the right side.


	denoise (bool, optional) – Apply the Gaussian filter if True.


	norm (bool, optional) – Apply the normalization if True.


	use_overlap (bool, optional) – Use the combination of images in the overlap area for calculating
correlation coefficients if True.






	Returns

	
	cor (float) – Center-of-rotation.


	overlap (float) – Width of the overlap area between two halves of the sinogram.


	side (int) – Overlap side between two halves of the sinogram.


	overlap_position (float) – Position of the window in the first image giving the best
correlation metric.










References

[1] : https://doi.org/10.1364/OE.418448






	
algotom.prep.calculation.complex_gradient(mat)

	Return complex gradient of a 2D array.






	
algotom.prep.calculation.find_shift_based_phase_correlation(mat1, mat2, gradient=True)

	Find relative translation in x and y direction between images with
haft-pixel accuracy (Ref. [1]).


	Parameters

	
	mat1 (array_like) – 2D array. Projection image or sinogram image.


	mat2 (array_like) – 2D array. Projection image or sinogram image.


	gradient (bool, optional) – Use the complex gradient of the input image for calculation.






	Returns

	
	ty (float) – Translation in y-direction.


	tx (float) – Translation in x-direction.










References

[1] : https://doi.org/10.1049/el:20030666






	
algotom.prep.calculation.find_center_based_phase_correlation(mat1, mat2, flip=True, gradient=True)

	Find the center-of-rotation (COR) using projection images at 0-degree
and 180-degree.


	Parameters

	
	mat1 (array_like) – 2D array. Projection image at 0-degree.


	mat2 (array_like) – 2D array. Projection image at 180-degree.


	flip (bool, optional) – Flip the 180-degree projection in the left-right direction if True.


	gradient (bool, optional) – Use the complex gradient of the input image for calculation.






	Returns

	cor (float) – Center-of-rotation.










	
algotom.prep.calculation.find_center_projection(mat1, mat2, flip=True, chunk_height=None, start_row=None, denoise=True, norm=False, use_overlap=False)

	Find the center-of-rotation (COR) using projection images at 0-degree
and 180-degree based on a method in Ref. [1].


	Parameters

	
	mat1 (array_like) – 2D array. Projection image at 0-degree.


	mat2 (array_like) – 2D array. Projection image at 180-degree.


	flip (bool, optional) – Flip the 180-degree projection in the left-right direction if True.


	chunk_height (int or float, optional) – Height of the sub-area of projection images. If a float is given, it
must be in the range of [0.0, 1.0].


	start_row (int, optional) – Starting row used to extract the sub-area.


	denoise (bool, optional) – Apply the Gaussian filter if True.


	norm (bool, optional) – Apply the normalization if True.


	use_overlap (bool, optional) – Use the combination of images in the overlap area for calculating
correlation coefficients if True.






	Returns

	cor (float) – Center-of-rotation.





References

[1] : https://doi.org/10.1364/OE.418448






	
algotom.prep.calculation.calculate_reconstructable_height(y_start, y_stop, pitch, scan_type)

	Calculate reconstructable height in a helical scan.


	Parameters

	
	y_start (float) – Y-position of the stage at the beginning of the scan.


	y_stop (float) – Y-position of the stage at the end of the scan.


	pitch (float) – The distance which the y-stage is translated in one full rotation.


	scan_type ({“180”, “360”}) – One of two options: “180” for generating a 180-degree sinogram or
“360” for generating a 360-degree sinogram.






	Returns

	
	y_s (float) – Starting point of the reconstructable height.


	y_e (float) – End point of the reconstructable height.















	
algotom.prep.calculation.calculate_maximum_index(y_start, y_stop, pitch, pixel_size, scan_type)

	Calculate the maximum index of a reconstructable slice in a helical scan.


	Parameters

	
	y_start (float) – Y-position of the stage at the beginning of the scan.


	y_stop (float) – Y-position of the stage at the end of the scan.


	pitch (float) – The distance which the y-stage is translated in one full rotation.


	pixel_size (float) – Pixel size. The unit must be the same as y-position.


	scan_type ({“180”, “360”}) – One of two options: “180” for generating a 180-degree sinogram or
“360” for generating a 360-degree sinogram.






	Returns

	int – Maximum index of reconstructable slices.













            

          

      

      

    

  

    
      
          
            
  
7.2.2. algotom.prep.conversion

Module of conversion methods in the preprocessing stage:



	Stitching images.


	Joining images if there is no overlapping.


	Converting a 360-degree sinogram with offset center-of-rotation (COR)
to a 180-degree sinogram.


	Extending a 360-degree sinogram with offset COR for direct
reconstruction instead of converting it to a 180-degree sinogram.


	Converting a 180-degree sinogram to a 360-sinogram.


	Generating a sinogram from a helical data.







Functions:







	make_weight_matrix(mat1, mat2, overlap, side)

	Generate a linear-ramp weighting matrix for image stitching.



	stitch_image(mat1, mat2, overlap, side[, ...])

	Stitch projection images or sinogram images using a linear ramp.



	join_image(mat1, mat2, joint_width, side[, ...])

	Join projection images or sinogram images.



	stitch_image_multiple(list_mat, list_overlap)

	Stitch list of projection images or sinogram images using a linear ramp.



	join_image_multiple(list_mat, list_joint[, ...])

	Join list of projection images or sinogram images.



	convert_sinogram_360_to_180(sino_360, cor[, ...])

	Convert a 360-degree sinogram to a 180-degree sinogram.



	convert_sinogram_180_to_360(sino_180, center)

	Convert a 180-degree sinogram to a 360-degree sinogram (Ref.



	extend_sinogram(sino_360, cor[, apply_log])

	Extend a 360-degree sinogram (with offset center-of-rotation) for later reconstruction (Ref.



	generate_sinogram_helical_scan(index, ...[, ...])

	Generate a 180-degree/360-degree sinogram from a helical-scan dataset which is a hdf/nxs object (Ref.



	generate_full_sinogram_helical_scan(index, ...)

	Generate a full sinogram from a helical-scan dataset which is a hdf/nxs object (Ref.







	
algotom.prep.conversion.make_weight_matrix(mat1, mat2, overlap, side)

	Generate a linear-ramp weighting matrix for image stitching.


	Parameters

	
	mat1 (array_like) – 2D array. Projection image or sinogram image.


	mat2 (array_like) – 2D array. Projection image or sinogram image.


	overlap (int) – Width of the overlap area between two images.


	side ({0, 1}) – Only two options: 0 or 1. It is used to indicate the overlap side
respects to image 1. “0” corresponds to the left side. “1” corresponds
to the right side.













	
algotom.prep.conversion.stitch_image(mat1, mat2, overlap, side, wei_mat1=None, wei_mat2=None, norm=True, total_width=None)

	Stitch projection images or sinogram images using a linear ramp.


	Parameters

	
	mat1 (array_like) – 2D array. Projection image or sinogram image.


	mat2 (array_like) – 2D array. Projection image or sinogram image.


	overlap (float) – Width of the overlap area between two images.


	side ({0, 1}) – Only two options: 0 or 1. It is used to indicate the overlap side
respects to image 1. “0” corresponds to the left side. “1” corresponds
to the right side.


	wei_mat1 (array_like, optional) – Weighting matrix used for image 1.


	wei_mat2 (array_like, optional) – Weighting matrix used for image 2.


	norm (bool, optional) – Enable/disable normalization before stitching.


	total_width (int, optional) – Final width of the stitched image.






	Returns

	array_like – Stitched image.










	
algotom.prep.conversion.join_image(mat1, mat2, joint_width, side, norm=True, total_width=None)

	Join projection images or sinogram images. This is useful for fixing the
problem of non-overlap between images.


	Parameters

	
	mat1 (array_like) – 2D array. Projection image or sinogram image.


	mat2 (array_like) – 2D array. Projection image or sinogram image.


	joint_width (float) – Width of the joint area between two images.


	side ({0, 1}) – Only two options: 0 or 1. It is used to indicate the overlap side
respects to image 1. “0” corresponds to the left side. “1” corresponds
to the right side.


	norm (bool) – Enable/disable normalization before joining.


	total_width (int, optional) – Final width of the joined image.






	Returns

	array_like – Stitched image.










	
algotom.prep.conversion.stitch_image_multiple(list_mat, list_overlap, norm=True, total_width=None)

	Stitch list of projection images or sinogram images using a linear ramp.


	Parameters

	
	list_mat (list of array_like) – List of 2D array. Projection image or sinogram image.


	list_overlap (list of tuple of floats) – List of [overlap, side].
overlap : Width of the overlap area between two images.
side : Overlap side between two images.


	norm (bool, optional) – Enable/disable normalization before stitching.


	total_width (int, optional) – Final width of the stitched image.






	Returns

	array_like – Stitched image.










	
algotom.prep.conversion.join_image_multiple(list_mat, list_joint, norm=True, total_width=None)

	Join list of projection images or sinogram images. This is useful for
fixing the problem of non-overlap between images.


	Parameters

	
	list_mat (list of array_like) – List of 2D array. Projection image or sinogram image.


	list_joint (list of tuple of floats) – List of [joint_width, side].
joint_width : Width of the joint area between two images.
side : Overlap side between two images.


	norm (bool, optional) – Enable/disable normalization before stitching.


	total_width (int, optional) – Final width of the stitched image.






	Returns

	array_like – Stitched image.










	
algotom.prep.conversion.convert_sinogram_360_to_180(sino_360, cor, wei_mat1=None, wei_mat2=None, norm=True, total_width=None)

	Convert a 360-degree sinogram to a 180-degree sinogram.


	Parameters

	
	sino_360 (array_like) – 2D array. 360-degree sinogram.


	cor (float or tuple of float) – Center-of-rotation or (Overlap_area, overlap_side).


	wei_mat1 (array_like, optional) – Weighting matrix used for the 1st haft of the sinogram.


	wei_mat2 (array_like, optional) – Weighting matrix used for the 2nd haft of the sinogram.


	norm (bool, optional) – Enable/disable normalization before stitching.


	total_width (int, optional) – Final width of the stitched image.






	Returns

	
	sino_stitch (array_like) – Converted sinogram.


	cor (float) – Updated center-of-rotation referred to the converted sinogram.















	
algotom.prep.conversion.convert_sinogram_180_to_360(sino_180, center)

	Convert a 180-degree sinogram to a 360-degree sinogram (Ref. [1]).


	Parameters

	
	sino_180 (array_like) – 2D array. 180-degree sinogram.


	center (float) – Center-of-rotation.






	Returns

	array_like – 360-degree sinogram.





References

[1] : https://doi.org/10.1364/OE.22.019078






	
algotom.prep.conversion.extend_sinogram(sino_360, cor, apply_log=True)

	Extend a 360-degree sinogram (with offset center-of-rotation) for
later reconstruction (Ref. [1]).


	Parameters

	
	sino_360 (array_like) – 2D array. 360-degree sinogram.


	cor (float or tuple of float) – Center-of-rotation or (Overlap_area, overlap_side).


	apply_log (bool, optional) – Apply the logarithm function if True.






	Returns

	
	sino_pad (array_like) – Extended sinogram.


	cor (float) – Updated center-of-rotation referred to the converted sinogram.










References

[1] : https://doi.org/10.1364/OE.418448






	
algotom.prep.conversion.generate_sinogram_helical_scan(index, tomo_data, num_proj, pixel_size, y_start, y_stop, pitch, scan_type='180', angles=None, flat=None, dark=None, mask=None, crop=(0, 0, 0, 0))

	Generate a 180-degree/360-degree sinogram from a helical-scan dataset
which is a hdf/nxs object (Ref. [1]).


	Parameters

	
	index (int) – Index of the sinogram.


	tomo_data (hdf object.) – 3D array.


	num_proj (int) – Number of projections per 180-degree.


	pixel_size (float) – Pixel size. The unit must be the same as y-position.


	y_start (float) – Y-position of the stage at the beginning of the scan.


	y_stop (float) – Y-position of the stage at the end of the scan.


	pitch (float) – The distance which the y-stage is translated in one full rotation.


	scan_type ({“180”, “360”}) – One of two options: “180” for generating a 180-degree sinogram or
“360” for generating a 360-degree sinogram.


	angles (array_like, optional) – 1D array. Angles (degree) corresponding to acquired projections.


	flat (array_like, optional) – Flat-field image used for flat-field correction.


	dark (array_like, optional) – Dark-field image used for flat-field correction.


	mask (array_like, optional) – Used for removing streak artifacts caused by blobs in the flat-field
image.


	crop (tuple of int, optional) – Used for cropping images.






	Returns

	
	sinogram (array_like) – 2D array. 180-degree sinogram or 360-degree sinogram.


	list_angle (array_like) – 1D array. List of angles corresponding to the generated sinogram.










References

[1] : https://doi.org/10.1364/OE.418448






	
algotom.prep.conversion.generate_full_sinogram_helical_scan(index, tomo_data, num_proj, pixel_size, y_start, y_stop, pitch, scan_type='180', angles=None, flat=None, dark=None, mask=None, crop=(0, 0, 0, 0))

	Generate a full sinogram from a helical-scan dataset which is a hdf/nxs
object (Ref. [1]). Full sinogram is all 1D projections of the same slice
of a sample staying inside the field of view.


	Parameters

	
	index (int) – Index of the sinogram.


	tomo_data (hdf object.) – 3D array.


	num_proj (int) – Number of projections per 180-degree.


	pixel_size (float) – Pixel size. The unit must be the same as y-position.


	y_start (float) – Y-position of the stage at the beginning of the scan.


	y_stop (float) – Y-position of the stage at the end of the scan.


	pitch (float) – The distance which the y-stage is translated in one full rotation.


	scan_type ({“180”, “360”}) – Data acquired is the 180-degree type or 360-degree type [1].


	angles (array_like, optional) – 1D array. Angles (degree) corresponding to acquired projections.


	flat (array_like, optional) – Flat-field image used for flat-field correction.


	dark (array_like, optional) – Dark-field image used for flat-field correction.


	mask (array_like, optional) – Used for removing streak artifacts caused by blobs in the flat-field
image.


	crop (tuple of int, optional) – Used for cropping images.






	Returns

	
	sinogram (array_like) – 2D array. Full sinogram.


	list_angle (array_like) – 1D array. List of angles corresponding to the generated sinogram.










References

[1] : https://doi.org/10.1364/OE.418448









            

          

      

      

    

  

    
      
          
            
  
7.2.3. algotom.prep.correction

Module of correction methods in the preprocessing stage:



	Flat-field correction.


	Distortion correction.


	MTF deconvolution.


	Tilted sinogram generation.


	Tilted 1D intensity-profile generation.


	Beam hardening correction.


	Sinogram upsampling.







Functions:







	flat_field_correction(proj, flat, dark[, ...])

	Perform flat-field correction with options to remove zinger artifacts and/or stripe artifacts.



	unwarp_projection(proj, xcenter, ycenter, ...)

	Apply distortion correction to a projection image using the polynomial backward model (Ref.



	unwarp_sinogram(data, index, xcenter, ...)

	Unwarp sinogram [:,index.:] of a 3D tomographic dataset or a hdf/nxs object.



	unwarp_sinogram_chunk(data, start_index, ...)

	Unwarp chunk of sinograms [:, start_index: stop_index, :] of a 3D tomographic dataset or a hdf/nxs object.



	mtf_deconvolution(mat, window, pad)

	Deconvolve a projection-image using division in the Fourier domain.



	generate_tilted_sinogram(data, index, angle, ...)

	Generate a tilted sinogram of a 3D tomographic dataset or a hdf/nxs object.



	generate_tilted_sinogram_chunk(data, ...)

	Generate a chunk of tilted sinograms of a 3D tomographic dataset or a hdf/nxs object.



	generate_tilted_profile_line(mat, index, angle)

	Generate a tilted horizontal intensity-profile of an image.



	generate_tilted_profile_chunk(mat, ...)

	Generate a chunk of tilted horizontal intensity-profiles of an image.



	non_linear_function(intensity, q, n[, opt])

	Function used to define the response curve.



	beam_hardening_correction(mat, q, n[, opt])

	Correct the grayscale values of a normalized image using a non-linear function.



	upsample_sinogram(sinogram, scale[, center, ...])

	Upsample a sinogram-image along angular direction based on the double-wedge filter (Ref.







	
algotom.prep.correction.flat_field_correction(proj, flat, dark, ratio=1.0, use_dark=True, **options)

	Perform flat-field correction with options to remove zinger artifacts
and/or stripe artifacts.


	Parameters

	
	proj (array_like) – 3D or 2D array. Projection images or a sinogram image.


	flat (array_like) – 2D or 1D array. Flat-field image or a single row of it.


	dark (array_like) – 2D or 1D array. Dark-field image or a single row of it.


	ratio (float) – Ratio between exposure time used for recording projections
and exposure time used for recording flat field.


	use_dark (bool) – Subtracting dark field if True.


	options (dict, optional) – Apply a zinger removal method and/or ring removal methods.
E.g option1={“method”: “dezinger”, “para1”: 0.001, “para2”: 1},
option2={“method”: “remove_stripe_based_sorting”,                “para1”: 15, “para2”: 1}






	Returns

	array_like – 3D or 2D array. Corrected projections or corrected sinograms.










	
algotom.prep.correction.unwarp_projection(proj, xcenter, ycenter, list_fact)

	Apply distortion correction to a projection image using the polynomial
backward model (Ref. [1]).


	Parameters

	
	proj (array_like) – 2D array. Projection image.


	xcenter (float) – Center of distortion in x-direction.


	ycenter (float) – Center of distortion in y-direction.


	list_fact (list of float) – Polynomial coefficients of the backward model.






	Returns

	array_like – 2D array. Distortion corrected.





References

[1] : https://doi.org/10.1364/OE.23.032859






	
algotom.prep.correction.unwarp_sinogram(data, index, xcenter, ycenter, list_fact, **option)

	Unwarp sinogram [:,index.:] of a 3D tomographic dataset or
a hdf/nxs object.


	Parameters

	
	data (array_like or hdf object) – 3D array.


	index (int) – Index of the sinogram.


	xcenter (float) – Center of distortion in x-direction.


	ycenter (float) – Center of distortion in y-direction.


	list_fact (list of float) – Polynomial coefficients of the backward model.


	option (list or tuple of int) – To extract subset data along axis 0 from a hdf object. E.g option =
(start, stop, step)






	Returns

	array_like – 2D array. Distortion-corrected sinogram.










	
algotom.prep.correction.unwarp_sinogram_chunk(data, start_index, stop_index, xcenter, ycenter, list_fact, **option)

	Unwarp chunk of sinograms [:, start_index: stop_index, :]
of a 3D tomographic dataset or a hdf/nxs object.


	Parameters

	
	data (array_like or hdf object) – 3D array.


	start_index (int) – Starting index of sinograms.


	stop_index (int) – Stopping index of sinograms.


	xcenter (float) – Center of distortion in x-direction.


	ycenter (float) – Center of distortion in y-direction.


	list_fact (list of float) – Polynomial coefficients of the backward model.


	option (list or tuple of int) – To extract subset data along axis 0 from a hdf object. E.g option =
[start, stop, step]






	Returns

	array_like – 3D array. Distortion corrected.










	
algotom.prep.correction.mtf_deconvolution(mat, window, pad)

	Deconvolve a projection-image using division in the Fourier domain.
Window can be determined using the approach in Ref. [1].


	Parameters

	
	mat (array_like) – 2D array. Projection image.


	window (array_like) – 2D array. MTF function.


	pad (int) – Padding width to reduce the side effects of the Fourier transform.






	Returns

	array_like – 2D array. Deconvolved image.





References

[1] : https://doi.org/10.1117/12.2530324






	
algotom.prep.correction.generate_tilted_sinogram(data, index, angle, **option)

	Generate a tilted sinogram of a 3D tomographic dataset or a hdf/nxs object.


	Parameters

	
	data (array_like or hdf object) – 3D array.


	index (int) – Index of the sinogram.


	angle (float) – Tilted angle in degree.


	option (list or tuple of int) – To extract subset data along axis 0 from a hdf object. E.g option =
(start, stop, step)






	Returns

	array_like – 2D array. Tilted sinogram.










	
algotom.prep.correction.generate_tilted_sinogram_chunk(data, start_index, stop_index, angle, **option)

	Generate a chunk of tilted sinograms of a 3D tomographic dataset or a
hdf/nxs object.


	Parameters

	
	data (array_like or hdf object) – 3D array.


	start_index (int) – Starting index of sinograms.


	stop_index (int) – Stopping index of sinograms.


	angle (float) – Tilted angle in degree.


	option (list or tuple of int) – To extract subset data along axis 0 from a hdf object. E.g option =
(start, stop, step)






	Returns

	array_like – 3D array. Chunk of tilted sinograms.










	
algotom.prep.correction.generate_tilted_profile_line(mat, index, angle)

	Generate a tilted horizontal intensity-profile of an image.


	Parameters

	
	mat (array_like) – 2D array.


	index (int) – Index of the line.


	angle (float) – Tilted angle in degree.






	Returns

	array_like – 1D array.










	
algotom.prep.correction.generate_tilted_profile_chunk(mat, start_index, stop_index, angle)

	Generate a chunk of tilted horizontal intensity-profiles of an image.


	Parameters

	
	mat (array_like) – 2D array.


	start_index (int) – Starting index of lines.


	stop_index (int) – Stopping index of lines.


	angle (float) – Tilted angle in degree.






	Returns

	array_like – 2D array.










	
algotom.prep.correction.non_linear_function(intensity, q, n, opt=True)

	Function used to define the response curve.


	Parameters

	
	intensity (float) – Values stay in the range of [0; 1]


	q (float) – Positive number.


	n (float) – Positive number. Must larger than 1.


	opt (bool) – True: Curve more to values closer to 1.0.
False: Curve more to values closer to 0.0






	Returns

	float










	
algotom.prep.correction.beam_hardening_correction(mat, q, n, opt=True)

	Correct the grayscale values of a normalized image using a non-linear
function.


	Parameters

	
	mat (array_like) – Normalized projection image or sinogram image.


	q (float) – Positive number. Recommended range [0.005, 50].


	n (float) – Positive number. Must larger than 1.


	opt (bool) – True: Curve towards 0.0.
False: Curve towards 1.0.






	Returns

	array_like – Corrected image.










	
algotom.prep.correction.upsample_sinogram(sinogram, scale, center=0, sino_type='180', iteration=1, pad=50)

	Upsample a sinogram-image along angular direction based on the
double-wedge filter (Ref. [1]).


	Parameters

	
	sinogram (array_like) – 2D array. Sinogram image.


	scale (int) – Upscale 2n_x time. E.g. 2, 4, 6.


	center (float, optional) – Center-of-rotation. No need for a 360-sinogram.


	sino_type ({“180”, “360”}) – Sinogram type : 180-degree or 360-degree.


	iteration (int, optional) – Number of iteration for the double-wedge filter.


	pad (int, optional) – Padding width for FFT.






	Returns

	array_like – Upsampled sinogram.













            

          

      

      

    

  

    
      
          
            
  
7.2.4. algotom.prep.filtering

Module of filtering methods in the preprocessing stage:



	Fresnel filter (denoising or low-pass filter), a simplified version of
the well-known Paganin’s filter.


	Double-wedge filter.







Functions:







	make_fresnel_window(height, width, ratio, dim)

	Create a low pass window based on the Fresnel propagator.



	fresnel_filter(mat, ratio[, dim, window, ...])

	Apply a low-pass filter based on the Fresnel propagator to an image (Ref.



	make_double_wedge_mask(height, width, radius)

	Generate a double-wedge binary mask using Eq.



	double_wedge_filter(sinogram[, center, ...])

	Apply double-wedge filter to a sinogram image (Ref.







	
algotom.prep.filtering.make_fresnel_window(height, width, ratio, dim)

	Create a low pass window based on the Fresnel propagator.
It is used to denoise a projection image (dim=2) or a
sinogram image (dim=1).


	Parameters

	
	height (int) – Image height


	width (int) – Image width


	ratio (float) – To define the shape of the window.


	dim ({1, 2}) – Use “1” if working on a sinogram image and “2” if working on
a projection image.






	Returns

	array_like – 2D array.










	
algotom.prep.filtering.fresnel_filter(mat, ratio, dim=1, window=None, pad=150, apply_log=True)

	Apply a low-pass filter based on the Fresnel propagator to an image
(Ref. [1]). It can be used for improving the contrast of an image.
It’s simpler than the well-known Paganin’s filter (Ref. [2]).


	Parameters

	
	mat (array_like) – 2D array. Projection image or sinogram image.


	ratio (float) – Define the shape of the window. Larger is more smoothing.


	dim ({1, 2}) – Use “1” if working on a sinogram image and “2” if working on
a projection image.


	window (array_like, optional) – Window for deconvolution.


	pad (int) – Padding width.


	apply_log (bool, optional) – Apply the logarithm function to the sinogram before filtering.






	Returns

	array_like – 2D array. Filtered image.





References

[1] : https://doi.org/10.1364/OE.418448

[2] : https://tinyurl.com/2f8nv875






	
algotom.prep.filtering.make_double_wedge_mask(height, width, radius)

	Generate a double-wedge binary mask using Eq. (3) in Ref. [1].
Values outside the double-wedge region correspond to 0.0.


	Parameters

	
	height (int) – Image height.


	width (int) – Image width.


	radius (int) – Radius of an object, in pixel unit.






	Returns

	array_like – 2D binary mask.





References

[1] : https://doi.org/10.1364/OE.22.019078






	
algotom.prep.filtering.double_wedge_filter(sinogram, center=0, sino_type='180', iteration=5, mask=None, ratio=1.0, pad=250)

	Apply double-wedge filter to a sinogram image (Ref. [1]).


	Parameters

	
	sinogram (array_like) – 2D array. 180-degree sinogram or 360-degree sinogram.


	center (float, optional) – Center-of-rotation. No need for a 360-sinogram.


	sino_type ({“180”, “360”}) – Sinogram type : 180-degree or 360-degree.


	iteration (int) – Number of iteration.


	mask (array_like, optional) – Double-wedge binary mask.


	ratio (float, optional) – Define the cut-off angle of the double-wedge filter.


	pad (int) – Padding width.






	Returns

	array_like – 2D array. Filtered sinogram.





References

[1] : https://doi.org/10.1364/OE.418448









            

          

      

      

    

  

    
      
          
            
  
7.2.5. algotom.prep.removal

Module of removal methods in the preprocessing stage:



	Many methods for removing stripe artifact in a sinogram
(<-> ring artifact in a reconstructed image).


	A zinger removal method.


	Blob removal methods.







Functions:







	remove_stripe_based_sorting(sinogram[, ...])

	Remove stripe artifacts in a sinogram using the sorting technique, algorithm 3 in Ref.



	remove_stripe_based_filtering(sinogram[, ...])

	Remove stripe artifacts in a sinogram using the filtering technique, algorithm 2 in Ref.



	remove_stripe_based_fitting(sinogram[, ...])

	Remove stripe artifacts in a sinogram using the fitting technique, algorithm 1 in Ref.



	remove_large_stripe(sinogram[, snr, size, ...])

	Remove large stripe artifacts in a sinogram, algorithm 5 in Ref.



	remove_dead_stripe(sinogram[, snr, size, ...])

	Remove unresponsive or fluctuating stripe artifacts in a sinogram, algorithm 6 in Ref.



	remove_all_stripe(sinogram[, snr, la_size, ...])

	Remove all types of stripe artifacts in a sinogram by combining algorithm 6, 5, 4, and 3 in Ref.



	remove_stripe_based_2d_filtering_sorting(...)

	Remove stripes using a 2D low-pass filter and the sorting-based technique, algorithm in section 3.3.4 in Ref.



	remove_stripe_based_normalization(sinogram)

	Remove stripes using the method in Ref.



	remove_stripe_based_regularization(sinogram)

	Remove stripes using the method in Ref.



	remove_stripe_based_fft(sinogram[, u, n, v, ...])

	Remove stripes using the method in Ref.



	remove_stripe_based_wavelet_fft(sinogram[, ...])

	Remove stripes using the method in Ref.



	remove_stripe_based_interpolation(sinogram)

	Combination of algorithm 4, 5, and 6 in Ref.



	check_zinger_size(mat, max_size)

	Check if the size of a zinger is smaller than a given size.



	select_zinger(mat, max_size)

	Select zingers smaller than a certain size.



	remove_zinger(mat, threshold[, size, check_size])

	Remove zinger using the method in Ref.



	generate_blob_mask(flat, size, snr)

	Generate a binary mask of blobs from a flat-field image (Ref.



	remove_blob_1d(sino_1d, mask_1d)

	Remove blobs in one row of a sinogram, e.g.



	remove_blob(mat, mask)

	Remove blobs in an image.







	
algotom.prep.removal.remove_stripe_based_sorting(sinogram, size=21, dim=1, **options)

	Remove stripe artifacts in a sinogram using the sorting technique,
algorithm 3 in Ref. [1]. Angular direction is along the axis 0.


	Parameters

	
	sinogram (array_like) – 2D array. Sinogram image.


	size (int) – Window size of the median filter.


	dim ({1, 2}, optional) – Dimension of the window.


	options (dict, optional) – Use another smoothing filter rather than the median filter.
E.g. options={“method”: “gaussian_filter”, “para1”: (1,21)}






	Returns

	array_like – 2D array. Stripe-removed sinogram.





References

[1] : https://doi.org/10.1364/OE.26.028396






	
algotom.prep.removal.remove_stripe_based_filtering(sinogram, sigma=3, size=21, dim=1, sort=True, **options)

	Remove stripe artifacts in a sinogram using the filtering technique,
algorithm 2 in Ref. [1]. Angular direction is along the axis 0.


	Parameters

	
	sinogram (array_like) – 2D array. Sinogram image


	sigma (int) – Sigma of the Gaussian window used to separate the low-pass and
high-pass components of the intensity profile of each column.


	size (int) – Window size of the median filter.


	dim ({1, 2}, optional) – Dimension of the window.


	sort (bool, optional) – Apply sorting if True.


	options (dict, optional) – Use another smoothing filter rather than the median filter.
E.g. options={“method”: “gaussian_filter”, “para1”: (1,21))}.






	Returns

	array_like – 2D array. Stripe-removed sinogram.





References

[1] : https://doi.org/10.1364/OE.26.028396






	
algotom.prep.removal.remove_stripe_based_fitting(sinogram, order=2, sigma=10, sort=False, num_chunk=1, **options)

	Remove stripe artifacts in a sinogram using the fitting technique,
algorithm 1 in Ref. [1]. Angular direction is along the axis 0.


	Parameters

	
	sinogram (array_like) – 2D array. Sinogram image


	order (int) – Polynomial fit order.


	sigma (int) – Sigma of the Gaussian window in the x-direction. Smaller is stronger.


	sort (bool, optional) – Apply sorting if True.


	num_chunk (int) – Number of chunks of rows to apply the fitting.


	options (dict, optional) – Use another smoothing filter rather than the Fourier gaussian filter.
E.g. options={“method”: “gaussian_filter”, “para1”: (1,21))}.






	Returns

	array_like – 2D array. Stripe-removed sinogram.





References

[1] : https://doi.org/10.1364/OE.26.028396






	
algotom.prep.removal.remove_large_stripe(sinogram, snr=3.0, size=51, drop_ratio=0.1, norm=True, **options)

	Remove large stripe artifacts in a sinogram, algorithm 5 in Ref. [1].
Angular direction is along the axis 0.


	Parameters

	
	sinogram (array_like) – 2D array. Sinogram image


	snr (float) – Ratio (>1.0) for stripe detection. Greater is less sensitive.


	size (int) – Window size of the median filter.


	drop_ratio (float, optional) – Ratio of pixels to be dropped, which is used to reduce
the possibility of the false detection of stripes.


	norm (bool, optional) – Apply normalization if True.


	options (dict, optional) – Use another smoothing filter rather than the median filter.
E.g. options={“method”: “gaussian_filter”, “para1”: (1,21))}.






	Returns

	array_like – 2D array. Stripe-removed sinogram.





References

[1] : https://doi.org/10.1364/OE.26.028396






	
algotom.prep.removal.remove_dead_stripe(sinogram, snr=3.0, size=51, residual=True, smooth_strength=10)

	Remove unresponsive or fluctuating stripe artifacts in a sinogram,
algorithm 6 in Ref. [1]. Angular direction is along the axis 0.


	Parameters

	
	sinogram (array_like) – 2D array. Sinogram image.


	snr (float) – Ratio (>1.0) for stripe detection. Greater is less sensitive.


	size (int) – Window size of the median filter.


	residual (bool, optional) – Removing residual stripes if True.


	smooth_strength (int, optional) – Window size of the uniform filter used to detect stripes.






	Returns

	ndarray – 2D array. Stripe-removed sinogram.





References

[1] : https://doi.org/10.1364/OE.26.028396






	
algotom.prep.removal.remove_all_stripe(sinogram, snr=3.0, la_size=51, sm_size=21, drop_ratio=0.1, dim=1, **options)

	Remove all types of stripe artifacts in a sinogram by combining algorithm
6, 5, 4, and 3 in Ref. [1]. Angular direction is along the axis 0.


	Parameters

	
	sinogram (array_like) – 2D array. Sinogram image.


	snr (float) – Ratio (>1.0) for stripe detection. Greater is less sensitive.


	la_size (int) – Window size of the median filter to remove large stripes.


	sm_size (int) – Window size of the median filter to remove small-to-medium stripes.


	drop_ratio (float, optional) – Ratio of pixels to be dropped, which is used to reduce the possibility
of the false detection of stripes.


	dim ({1, 2}, optional) – Dimension of the window.


	options (dict, optional) – Use another smoothing filter rather than the median filter.
E.g. options={“method”: “gaussian_filter”, “para1”: (1,21))}






	Returns

	array_like – 2D array. Stripe-removed sinogram.





References

[1] : https://doi.org/10.1364/OE.26.028396






	
algotom.prep.removal.remove_stripe_based_2d_filtering_sorting(sinogram, sigma=3, size=21, dim=1, **options)

	Remove stripes using a 2D low-pass filter and the sorting-based technique,
algorithm in section 3.3.4 in Ref. [1].
Angular direction is along the axis 0.


	Parameters

	
	sinogram (array_like) – 2D array. Sinogram image.


	sigma (int) – Sigma of the Gaussian window.


	size (int) – Window size of the median filter.


	dim ({1, 2}, optional) – Dimension of the window.






	Returns

	array_like – 2D array. Stripe-removed sinogram.





References

[1] : https://doi.org/10.1117/12.2530324






	
algotom.prep.removal.remove_stripe_based_normalization(sinogram, sigma=15, num_chunk=1, sort=True, **options)

	Remove stripes using the method in Ref. [1].
Angular direction is along the axis 0.


	Parameters

	
	sinogram (array_like) – 2D array. Sinogram image.


	sigma (int) – Sigma of the Gaussian window.


	num_chunk (int) – Number of chunks of rows.


	sort (bool, optional) – Apply sorting (Ref. [2]) if True.


	options (dict, optional) – Use another smoothing 1D-filter rather than the Gaussian filter.
E.g. options={“method”: “median_filter”, “para1”: 21)}.






	Returns

	array_like – 2D array. Stripe-removed sinogram.





References

[1] : https://www.mcs.anl.gov/research/projects/X-ray-cmt/rivers/tutorial.html

[2] : https://doi.org/10.1364/OE.26.028396






	
algotom.prep.removal.remove_stripe_based_regularization(sinogram, alpha=0.0005, num_chunk=1, apply_log=True, sort=True)

	Remove stripes using the method in Ref. [1].
Angular direction is along the axis 0.


	Parameters

	
	sinogram (array_like) – 2D array. Sinogram image.


	alpha (float) – Regularization parameter, e.g. 0.0005. Smaller is stronger.


	num_chunk (int) – Number of chunks of rows.


	apply_log (bool) – Apply the logarithm function to the sinogram if True.


	sort (bool, optional) – Apply sorting (Ref. [2]) if True.






	Returns

	array_like – 2D array. Stripe-removed sinogram.





References

[1] : https://doi.org/10.1016/j.aml.2010.08.022

[2] : https://doi.org/10.1364/OE.26.028396






	
algotom.prep.removal.remove_stripe_based_fft(sinogram, u=20, n=8, v=1, sort=False)

	Remove stripes using the method in Ref. [1].
Angular direction is along the axis 0.


	Parameters

	
	sinogram (array_like) – 2D array. Sinogram image.


	u (int) – Cutoff frequency.


	n (int) – Filter order.


	v (int) – Number of rows (* 2) to be applied the filter.


	sort (bool, optional) – Apply sorting (Ref. [2]) if True.






	Returns

	ndarray – 2D array. Stripe-removed sinogram.





References

[1] : https://doi.org/10.1063/1.1149043

[2] : https://doi.org/10.1364/OE.26.028396






	
algotom.prep.removal.remove_stripe_based_wavelet_fft(sinogram, level=5, size=1, wavelet_name='db9', window_name='gaussian', sort=False, **options)

	Remove stripes using the method in Ref. [1].
Angular direction is along the axis 0.


	Parameters

	
	sinogram (array_like) – 2D array. Sinogram image.


	level (int) – Wavelet decomposition level.


	size (int) – Damping parameter. Larger is stronger.


	wavelet_name (str) – Name of a wavelet. Search pywavelets API for a full list.


	window_name (str) – High-pass window. Two options: “gaussian” or “butter”.


	sort (bool, optional) – Apply sorting (Ref. [2]) if True.


	options (dict, optional) – Use another smoothing filter rather than the fft-gaussian-filter.
E.g. options={“method”: “gaussian_filter”, “para1”: (1,11))}






	Returns

	array_like – 2D array. Stripe-removed sinogram.





References

[1] : https://doi.org/10.1364/OE.17.008567

[2] : https://doi.org/10.1364/OE.26.028396






	
algotom.prep.removal.remove_stripe_based_interpolation(sinogram, snr=3.0, size=51, drop_ratio=0.1, norm=True, kind='linear', **options)

	Combination of algorithm 4, 5, and 6 in Ref. [1].
Angular direction is along the axis 0.


	Parameters

	
	sinogram (array_like) – 2D array. Sinogram image


	snr (float) – Ratio (>1.0) for stripe detection. Greater is less sensitive.


	size (int) – Window size of the median filter used to detect stripes.


	drop_ratio (float, optional) – Ratio of pixels to be dropped, which is used to reduce the possibility
of the false detection of stripes.


	norm (bool, optional) – Apply normalization if True.


	kind ({‘linear’, ‘cubic’, ‘quintic’}, optional) – The kind of spline interpolation to use. Default is ‘linear’.


	options (dict, optional) – Use another smoothing filter rather than the median filter.
E.g. options={“method”: “gaussian_filter”, “para1”: (1,21))}






	Returns

	array_like – 2D array. Stripe-removed sinogram.





References

[1] : https://doi.org/10.1364/OE.26.028396






	
algotom.prep.removal.check_zinger_size(mat, max_size)

	Check if the size of a zinger is smaller than a given size.


	Parameters

	
	mat (array_like) – 2D array.


	max_size (int) – Maximum size.






	Returns

	bool










	
algotom.prep.removal.select_zinger(mat, max_size)

	Select zingers smaller than a certain size.


	Parameters

	
	mat (array_like) – 2D array.


	max_size (int) – Maximum size in pixel.






	Returns

	array_like – 2D binary array.










	
algotom.prep.removal.remove_zinger(mat, threshold, size=2, check_size=False)

	Remove zinger using the method in Ref. [1], working on a projection image
or sinogram image.


	Parameters

	
	mat (array_like) – 2D array. Projection image or sinogram image.


	threshold (float) – Threshold to segment zingers. Smaller is more sensitive.
Recommended range [0.05, 0.1].


	size (int) – Size of a zinger.


	check_size (bool) – Enable/disable size checking before removal.






	Returns

	array_like – 2D array. Zinger-removed image.





References

[1] : https://doi.org/10.1364/OE.418448






	
algotom.prep.removal.generate_blob_mask(flat, size, snr)

	Generate a binary mask of blobs from a flat-field image (Ref. [1]).


	Parameters

	
	flat (array_like) – 2D array. Flat-field image.


	size (float) – Estimated size of the largest blob.


	snr (float) – Ratio used to segment blobs.






	Returns

	array_like – 2D array. Binary mask.





References

[1] : https://doi.org/10.1364/OE.418448






	
algotom.prep.removal.remove_blob_1d(sino_1d, mask_1d)

	Remove blobs in one row of a sinogram, e.g. for a helical scan as shown in
Ref. [1].


	Parameters

	
	sino_1d (array_like) – 1D array. A row of a sinogram.


	mask_1d (array_like) – 1D binary mask.






	Returns

	array_like – 1D array.





Notes

The method is used to remove streak artifacts caused by blobs in
a sinogram generated from a helical-scan data [1].

References

[1] : https://doi.org/10.1364/OE.418448






	
algotom.prep.removal.remove_blob(mat, mask)

	Remove blobs in an image.


	Parameters

	
	mat (array_like) – 2D array. Projection image or sinogram image.


	mask (array_like) – 2D binary mask.






	Returns

	array_like – 2D array.













            

          

      

      

    

  

    
      
          
            
  
7.2.6. algotom.prep.phase

Module for phase contrast imaging:



	Unwrap phase images.


	Generate a quality map, weight mask.


	Reconstruct surface from gradient images.


	
	Methods for speckle-based phase-contrast imaging.
	
	Find shifts between two stacks of images.


	Find shifts between sample-images.


	Align between two stacks of images.


	Retrieve phase image.


	Generate transmission-signal and dark-signal images.















Functions:







	unwrap_phase_based_cosine_transform(mat[, ...])

	Unwrap a phase image using the cosine transform as described in Ref.



	unwrap_phase_based_fft(mat[, win_for, win_back])

	Unwrap a phase image using the Fourier transform as described in Ref.



	unwrap_phase_iterative_fft(mat[, iteration, ...])

	Unwrap a phase image using an iterative FFT-based method as described in Ref.



	get_quality_map(mat, size)

	Generate a quality map using the phase derivative variance (PDV) as described in Ref.



	get_weight_mask(mat[, snr])

	Generate a binary weight-mask based on a provided quality map.



	reconstruct_surface_from_gradient_FC_method(...)

	Reconstruct a surface from the gradients in x and y-direction using the Frankot-Chellappa method (Ref.



	reconstruct_surface_from_gradient_SCS_method(...)

	Reconstruct a surface from the gradients in x and y-direction using the Simchony-Chellappa-Shao method (Ref.



	find_shift_between_image_stacks(ref_stack, ...)

	Find shifts between each pair of two image-stacks.



	find_shift_between_sample_images(ref_stack, ...)

	Find shifts between sample-images in a stack against the first sample-image.



	align_image_stacks(ref_stack, sam_stack, ...)

	Align each pair of two image-stacks using provided reference-sample shifts with an option to correct the shifts between sample-images.



	retrieve_phase_based_speckle_tracking(...[, ...])

	Retrieve the phase image from two stacks of speckle-images and sample-images where the shift of each pixel is determined using a correlation-based technique (Ref.



	get_transmission_dark_field_signal(...[, ...])

	Get the transmission-signal image and dark-signal image from two stacks of speckle-images and sample-images for correlation-based methods.







	
algotom.prep.phase.get_quality_map(mat, size)

	Generate a quality map using the phase derivative variance (PDV) as
described in Ref. [1].


	Parameters

	
	mat (array_like) – 2D array.


	size (int) – Window size. e.g. size=5.






	Returns

	array_like – 2D array.





References


	[1]Dennis Ghiglia and Mark Pritt, “Two-dimensional Phase Unwrapping:
	Theory, Algorithms, and Software”, Wiley, New York,1998.










	
algotom.prep.phase.get_weight_mask(mat, snr=1.5)

	Generate a binary weight-mask based on a provided quality map. Threshold
value is calculated based on Algorithm 4 in Ref. [1].


	Parameters

	
	mat (array_like) – 2D array. e.g. a quality map.


	snr (float) – Ratio used to calculate the threshold value. Greater is less sensitive.






	Returns

	array_like – 2D binary array.





References

[1] : https://doi.org/10.1364/OE.26.028396






	
algotom.prep.phase.unwrap_phase_based_cosine_transform(mat, window=None)

	Unwrap a phase image using the cosine transform as described in Ref. [1].


	Parameters

	
	mat (array_like) – 2D array. Wrapped phase-image in the range of [-Pi; Pi].


	window (array_like) – 2D array. Window is used for the cosine transform. Generated if None.






	Returns

	array_like – 2D array. Unwrapped phase-image.





References

[1] : https://doi.org/10.1364/JOSAA.11.000107






	
algotom.prep.phase.unwrap_phase_based_fft(mat, win_for=None, win_back=None)

	Unwrap a phase image using the Fourier transform as described in Ref. [1].


	Parameters

	
	mat (array_like) – 2D array. Wrapped phase-image in the range of [-Pi; Pi].


	win_for (array_like) – 2D array. FFT-window for the forward transform. Generated if None.


	win_back (array_like) – 2D array. FFT-window for the backward transform. Making sure there are
no zero-values. Generated if None.






	Returns

	array_like – 2D array. Unwrapped phase-image.





References

[1] : https://doi.org/10.1109/36.297989






	
algotom.prep.phase.unwrap_phase_iterative_fft(mat, iteration=4, win_for=None, win_back=None, weight_map=None)

	Unwrap a phase image using an iterative FFT-based method as described in
Ref. [1].


	Parameters

	
	mat (array_like) – 2D array. Wrapped phase-image in the range of [-Pi; Pi].


	iteration (int) – Number of iteration.


	win_for (array_like) – 2D array. FFT-window for the forward transform. Generated if None.


	win_back (array_like) – 2D array. FFT-window for the backward transform. Making sure there are
no zero-values. Generated if None.


	weight_map (array_like) – 2D array. Using a weight map if provided.






	Returns

	array_like – 2D array. Unwrapped phase-image.





References

[1] : https://doi.org/10.1364/AO.56.007079






	
algotom.prep.phase.reconstruct_surface_from_gradient_FC_method(grad_x, grad_y, correct_negative=True, window=None)

	Reconstruct a surface from the gradients in x and y-direction using the
Frankot-Chellappa method (Ref. [1]). Note that the DC-component
(average value of an image) of the reconstructed image is unidentified
because the DC-component of the FFT-window is zero.


	Parameters

	
	grad_x (array_like) – 2D array. Gradient in x-direction.


	grad_y (array_like) – 2D array. Gradient in y-direction.


	correct_negative (bool, optional) – Correct negative offset if True.


	window (list of array_like) – list of three 2D-arrays. Spatial frequencies in x, y, and the window
for the Fourier transform. Generated if None.






	Returns

	array_like – 2D array. Reconstructed surface.





References

[1] : https://doi.org/10.1109/34.3909






	
algotom.prep.phase.reconstruct_surface_from_gradient_SCS_method(grad_x, grad_y, correct_negative=True, window=None, pad=0, pad_mode='linear_ramp')

	Reconstruct a surface from the gradients in x and y-direction using the
Simchony-Chellappa-Shao method (Ref. [1]). Note that the DC-component
(average value of an image) of the reconstructed image is unidentified
because the DC-component of the FFT-window is zero.


	Parameters

	
	grad_x (array_like) – 2D array. Gradient in x-direction.


	grad_y (array_like) – 2D array. Gradient in y-direction.


	correct_negative (bool, optional) – Correct negative offset if True.


	window (list of array_like) – List of three 2D-arrays. Spatial frequencies in x, y, and the window
for the Fourier transform. Generated if None.


	pad (int) – Padding width.


	pad_mode (str) – Padding method. Full list can be found at numpy_pad documentation.






	Returns

	array_like – 2D array. Reconstructed surface.





References

[1] : https://doi.org/10.1109/34.55103






	
algotom.prep.phase.find_shift_between_image_stacks(ref_stack, sam_stack, win_size, margin, list_ij, global_value='mixed', gpu=False, block=32, sub_pixel=True, method='diff', size=3, ncore=None, norm=False)

	Find shifts between each pair of two image-stacks. Can be used to
align reference-images and sample-images in speckle-based imaging
technique.
The method finds the shift between two images by finding local shifts
between small areas of the images given by a list of points.


	Parameters

	
	ref_stack (array_like) – 3D array. Reference images.


	sam_stack (array_like) – 3D array. Sample images.


	win_size (int) – To define the size of the area around a selected pixel of the sample
image.


	margin (int) – To define the size of the area of the reference image for searching,
i.e. size = 2 * margin + win_size.


	list_ij (list of lists of int) – List of indices of points used for local search. Accept the value of
[i_index, j_index] for a single point or
[[i_index0, i_index1,…], [j_index0, j_index1,…]]
for multiple points.


	global_value ({“median”, “mean”, “mixed”}) – Method for calculating the global value from local values.


	gpu (bool, optional) – Use GPU for computing if True.


	block (int) – Size of a GPU block. E.g. 16, 32, 64, …


	sub_pixel (bool, optional) – Enable sub-pixel location.


	method ({“diff”, “poly_fit”}) – Method for finding 1d sub-pixel position. Two options: a differential
method or a polynomial method.


	size (int) – Window size around the integer location of the maximum value used for
sub-pixel searching.


	ncore (int or None) – Number of cpu-cores used for computing. Automatically selected if None.


	norm (bool, optional) – Normalize the input images if True.






	Returns

	array_like – List of [[x_shift0, y_shift0], [x_shift1, y_shift1],…]. The
shift of each image in the second stacks against each image in the
first stack.










	
algotom.prep.phase.find_shift_between_sample_images(ref_stack, sam_stack, sr_shifts, win_size, margin, list_ij, global_value='median', gpu=False, block=32, sub_pixel=True, method='diff', size=3, ncore=None, norm=False)

	Find shifts between sample-images in a stack against the first
sample-image. It is used to align sample-images of the same rotation-angle
from multiple tomographic datasets. Reference-images are used for
normalization before finding the shifts.


	Parameters

	
	ref_stack (array_like) – 3D array. Reference images.


	sam_stack (array_like) – 3D array. Sample images.


	sr_shifts (array_like) – List of shifts between each pair of reference-images and sample-images.


	win_size (int) – To define the size of the area around a selected pixel of the sample
image.


	margin (int) – To define the size of the area of the reference image for searching,
i.e. size = 2 * margin + win_size.


	list_ij (list of lists of int) – List of indices of points used for local search. Accept the value of
[i_index, j_index] for a single point or
[[i_index0, i_index1,…], [j_index0, j_index1,…]]
for multiple points.


	global_value ({“median”, “mean”, “mixed”}) – Method for calculating the global value from local values.


	gpu (bool, optional) – Use GPU for computing if True.


	block (int) – Size of a GPU block. E.g. 16, 32, 64, …


	sub_pixel (bool, optional) – Enable sub-pixel location.


	method ({“diff”, “poly_fit”}) – Method for finding 1d sub-pixel position. Two options: a differential
method or a polynomial method.


	size (int) – Window size around the integer location of the maximum value used for
sub-pixel searching.


	ncore (int or None) – Number of cpu-cores used for computing. Automatically selected if None.


	norm (bool, optional) – Normalize the input images if True.






	Returns

	array_like – List of [[0.0, 0.0], [x_shift1, y_shift1],…]. For convenient usage,
the shift of the first image in the stack with itself, [0.0, 0.0], is
added to the result.










	
algotom.prep.phase.align_image_stacks(ref_stack, sam_stack, sr_shifts, sam_shifts=None, mode='reflect')

	Align each pair of two image-stacks using provided reference-sample shifts
with an option to correct the shifts between sample-images.


	Parameters

	
	ref_stack (array_like) – 3D array. Reference images.


	sam_stack (array_like) – 3D array. Sample images.


	sr_shifts (array_like) – List of shifts between each pair of reference-images and sample-images.
Each value is the shift of the second image against the first image.


	sam_shifts (array_like, optional) – List of shifts between each sample-image and the first sample-image.


	mode ({‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional) – Method to fill up empty areas caused by shifting the images.






	Returns

	
	ref_stack (array_like) – 3D array. Aligned reference-images.


	sam_stack (array_like) – 3D array. Aligned sample-images.















	
algotom.prep.phase.get_transmission_dark_field_signal(ref_stack, sam_stack, x_shifts, y_shifts, win_size, margin=None, ncore=None)

	Get the transmission-signal image and dark-signal image from two stacks of
speckle-images and sample-images for correlation-based methods.


	Parameters

	
	ref_stack (array_like) – 3D array. Reference images (speckle images).


	sam_stack (array_like) – 3D array. Sample images.


	x_shifts (array_like) – x-shift image.


	y_shifts (array_like) – y-shift image.


	win_size (int) – Window size used for calculating signals.


	margin (int or None) – Margin value used for calculating signals.


	ncore (int or None) – Number of cpu-cores used for computing. Automatically selected if None.






	Returns

	
	trans (array_like) – Transmission-signal image


	dark (array_like) – Dark-signal image















	
algotom.prep.phase.retrieve_phase_based_speckle_tracking(ref_stack, sam_stack, find_shift='correl', filter_name='hamming', dark_signal=False, dim=1, win_size=7, margin=10, method='diff', size=3, gpu=False, block=(16, 16), ncore=None, norm=True, norm_global=False, chunk_size=100, surf_method='SCS', correct_negative=True, window=None, pad=100, pad_mode='linear_ramp', return_shift=False)

	Retrieve the phase image from two stacks of speckle-images and
sample-images where the shift of each pixel is determined using a
correlation-based technique (Ref. [1-2]) or a cost-function-based method
(Ref. [3]). Results can be an image, a list of 3 images, or a list of 5
images.


	Parameters

	
	ref_stack (array_like) – 3D array. Reference images (speckle images).


	sam_stack (array_like) – 3D array. Sample images.


	find_shift ({“correl”, “umpa”}) – To select the back-end method for finding shifts. Using a
correlation-based method (Ref. [1-2]) or a cost-based method
(Ref. [3]).


	filter_name ({None, “hann”, “bartlett”, “blackman”, “hamming”,                  “nuttall”, “parzen”, “triang”}) – To select a smoothing filter.


	dark_signal (bool) – Return both dark-signal image and transmission-signal image if True


	dim ({1, 2}) – To find the shifts (in x and y) separately (1D) or together (2D).


	win_size (int) – Size of local areas in the sample image for finding shifts.


	margin (int) – To define the searching range of the sample images in finding the
shifts compared to the reference images.


	method ({“diff”, “poly_fit”}) – Method for finding sub-pixel shift. Two options: a differential
method (Ref. [4]) or a polynomial method (Ref. [5]). The “poly_fit”
option is not available if using GPU.


	size (int) – Window size around the integer location of the maximum value used for
sub-pixel location. Adjustable if using the polynomial method.


	gpu ({False, True, “hybrid”}) – Use GPU for computing if True or in “hybrid” mode.


	block (tuple of two integer-values, optional) – Size of a GPU block. E.g. (8, 8), (16, 16), (32, 32), …


	ncore (int or None) – Number of cpu-cores used for computing. Automatically selected if None.


	norm (bool, optional) – Normalizing the inputs if True.


	norm_global (bool, optional) – Normalize by using the full size of the inputs if True.


	chunk_size (int or None) – Size of each chunk extracted along the height of the image.


	surf_method ({“SCS”, “FC”}) – Select method for surface reconstruction: “SCS” (Ref. [6]) or “FC”
(Ref. [7])


	correct_negative (bool, optional) – Correct negative offset if True.


	window (list of array_like) – List of three 2D-arrays. Spatial frequencies in x, y, and the window
in the Fourier space for the surface reconstruction method. Generated
if None.


	pad (int) – Padding-width used for the “SCS” method.


	pad_mode (str) – Padding-method used for the “SCS” method. Full list can be found at
numpy_pad documentation.


	return_shift (bool, optional) – Return a list of 3 arrays: x-shifts, y-shifts, and phase image if True.
The shifts can be used to determine transmission-signal and dark-signal
image.






	Returns

	
	phase (array_like) – Phase image. If dark_signal is False and return_shifts is False.


	phase, trans, dark (list of array_like) – Phase image, transmission image, and dark-signal image. If dark_signal
is True and return_shifts is False.


	x_shifts, y_shifts, phase (list of array_like) – x-shift image and y-shift image. If dark_signal is False and
return_shifts is True.


	x_shifts, y_shifts, phase, trans, dark (list of array_like) – x-shift image, y-shift image, phase image, transmission image, and
dark-signal image. If dark_signal is True and return_shifts is True.
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7.3.1. algotom.rec.reconstruction

Module of reconstruction methods:



	Filtered back-projection (FBP) method for GPU and CPU.


	Back-projection filtering (BPF) method for GPU and CPU.


	Direct Fourier inversion (DFI) method.


	Wrapper for Astra-Toolbox reconstruction methods (optional)


	Wrapper for Tomopy-gridrec reconstruction method (optional)


	Automatic determination of the center of rotation.


	Tool to assist in manual determination of the center of rotation.







Functions:







	fbp_reconstruction(sinogram, center[, ...])

	Apply the FBP (filtered back-projection) reconstruction method to a sinogram-image or a chunk of sinogram-images.



	bpf_reconstruction(sinogram, center[, ...])

	Apply the BPF (back-projection filtering) reconstruction method to a sinogram-image or a chunk of sinogram-images.



	dfi_reconstruction(sinogram, center[, ...])

	Apply the DFI (direct Fourier inversion) reconstruction method (Ref.



	gridrec_reconstruction(sinogram, center[, ...])

	Apply the gridrec method to a sinogram-image or a chunk of sinogram-images.



	astra_reconstruction(sinogram, center[, ...])

	Wrapper of reconstruction methods implemented in the astra toolbox package.



	find_center_based_slice_metric(sinogram, ...)

	Find the center-of-rotation (COR) using metrics of reconstructed slices at different CORs.



	find_center_visual_slices(sinogram, output, ...)

	For visually finding the center-of-rotation (COR) using reconstructed slices at different CORs.







	
algotom.rec.reconstruction.make_smoothing_window(filter_name, width)

	Make a 1d smoothing window.


	Parameters

	
	filter_name ({“hann”, “bartlett”, “blackman”, “hamming”, “nuttall”,                   “parzen”, “triang”}) – Window function used for filtering.


	width (int) – Width of the window.






	Returns

	array_like – 1D array.










	
algotom.rec.reconstruction.make_2d_ramp_window(height, width, filter_name=None)

	Make the 2d ramp window (in the Fourier space) by repeating the 1d ramp
window with the option of adding a smoothing window.


	Parameters

	
	height (int) – Height of the window.


	width (int) – Width of the window.


	filter_name ({None, “hann”, “bartlett”, “blackman”, “hamming”,                  “nuttall”, “parzen”, “triang”}) – Name of a smoothing window used.






	Returns

	complex ndarray – 2D array.










	
algotom.rec.reconstruction.apply_ramp_filter(sinogram, ramp_win=None, filter_name=None, pad=None, pad_mode='edge')

	Apply the ramp filter to a sinogram with the option of adding a smoothing
filter.


	Parameters

	
	sinogram (array_like) – 2D array. Sinogram image.


	ramp_win (complex ndarray or None) – Ramp window in the Fourier space.


	filter_name ({None, “hann”, “bartlett”, “blackman”, “hamming”,                  “nuttall”, “parzen”, “triang”}) – Name of a smoothing window used.


	pad (int or None) – To apply padding before the FFT. The value is set to 10% of the image
width if None is given.


	pad_mode (str) – Padding method. Full list can be found at numpy_pad documentation.






	Returns

	array_like – Filtered sinogram.










	
algotom.rec.reconstruction.back_projection_gpu(sinogram, angles, center, block=(16, 16), edge_pad=False)

	Implement the back-projection algorithm using GPU.


	Parameters

	
	sinogram (array_like) – 2D array. Sinogram image.


	angles (array_like) – 1D array. Angles (radian) corresponding to the sinogram.


	center (float) – Center of rotation.


	edge_pad (bool) – Enable/disable edge padding.


	block (tuple of int, optional) – Size of a GPU block. E.g. (8, 8), (16, 16), (32, 32), …






	Returns

	recon (array_like) – Back-projected image.










	
algotom.rec.reconstruction.back_projection_gpu_chunk(sinograms, angles, center, block=(16, 16), edge_pad=False)

	Implement the back-projection algorithm for a chunk of sinograms using GPU.
Axis of a sinogram/slice in the 3D array is 1.


	Parameters

	
	sinograms (array_like) – 3D array. Sinogram images.


	angles (array_like) – 1D array. Angles (radian) corresponding to a sinogram.


	center (float) – Center of rotation.


	edge_pad (bool) – Enable/disable edge padding.


	block (tuple of int, optional) – Size of a GPU block. E.g. (8, 8), (16, 16), (32, 32), …






	Returns

	recons (array_like) – Back-projected images.










	
algotom.rec.reconstruction.back_projection_cpu(sinogram, angles, center, edge_pad=False)

	Implement the back-projection algorithm using CPU.


	Parameters

	
	sinogram (array_like) – 2D array. (Filtered) sinogram image.


	angles (array_like) – 1D array. Angles (radian) corresponding to the sinogram.


	center (float) – Center of rotation.


	edge_pad (bool) – Enable/disable edge padding.






	Returns

	recon (array_like) – Square array, back-projected image.










	
algotom.rec.reconstruction.fbp_reconstruction(sinogram, center, angles=None, ratio=1.0, ramp_win=None, filter_name='hann', pad=None, pad_mode='edge', apply_log=True, gpu=True, block=(16, 16), ncore=None)

	Apply the FBP (filtered back-projection) reconstruction method to a
sinogram-image or a chunk of sinogram-images. Angular axis is 0.
If input is 3D array, the slicing axis of sinograms must be 1,
e.g. data[:, index, :].


	Parameters

	
	sinogram (array_like) – 2D/3D array. Sinogram image.


	center (float) – Center of rotation.


	angles (array_like, optional) – 1D array. List of angles (in radian) corresponding to the sinogram.


	ratio (float, optional) – To apply a circle mask to the reconstructed image.


	ramp_win (complex ndarray, optional) – Ramp window in the Fourier space. Generated if None.


	filter_name ({None, “hann”, “bartlett”, “blackman”, “hamming”,                  “nuttall”, “parzen”, “triang”}) – Apply a smoothing filter.


	pad (int, optional) – To apply padding before the FFT. The value is set to 10% of the image
width if None is given.


	pad_mode (str, optional) – Padding method. Full list can be found at numpy_pad documentation.


	apply_log (bool, optional) – Apply the logarithm function to the sinogram before reconstruction.


	gpu (bool, optional) – Use GPU for computing if True.


	block (tuple of two integer-values, optional) – Size of a GPU block. E.g. (8, 8), (16, 16), (32, 32), …


	ncore (int or None) – Number of cpu-cores used for computing. Automatically selected if None.






	Returns

	array_like – Square array. Reconstructed image.










	
algotom.rec.reconstruction.make_circular_ramp_window(width, filter_name=None)

	Make a circular ramp window (2d) with the option of adding a smoothing
window.


	Parameters

	
	width (int) – Width of the window.


	filter_name ({None, “hann”, “bartlett”, “blackman”, “hamming”,                  “nuttall”, “parzen”, “triang”}) – Name of a smoothing window used.






	Returns

	array_like – Square array, size of (width, width)










	
algotom.rec.reconstruction.apply_circular_ramp_filter(rec_img, ramp_win=None, filter_name=None, pad=None, pad_mode='edge')

	Apply the circular ramp filter to a back-projected image.


	Parameters

	
	rec_img (array_like) – Square array. back-projected image.


	ramp_win (array_like) – 2d circular ramp window, generated if None given.


	filter_name ({None, “hann”, “bartlett”, “blackman”, “hamming”,                  “nuttall”, “parzen”, “triang”}) – Name of a smoothing window used.


	pad (int or None) – To apply padding before the FFT. The value is set to 10% of the image
width if None is given.


	pad_mode (str) – Padding method. Full list can be found at numpy_pad documentation.






	Returns

	array_like – Square array.










	
algotom.rec.reconstruction.bpf_reconstruction(sinogram, center, angles=None, ratio=1.0, ramp_win=None, filter_name='hann', pad=None, pad_mode='edge', apply_log=True, gpu=True, block=(16, 16), ncore=None)

	Apply the BPF (back-projection filtering) reconstruction method to a
sinogram-image or a chunk of sinogram-images. Angular axis is 0.
If input is 3D array, the slicing axis of sinograms must be 1,
e.g. data[:, index, :].


	Parameters

	
	sinogram (array_like) – 2D/3D array. Sinogram image.


	center (float) – Center of rotation.


	angles (array_like, optional) – 1D array. List of angles (in radian) corresponding to the sinogram.


	ratio (float, optional) – Apply a circle mask to the reconstructed image.


	ramp_win (complex ndarray, optional) – Circular ramp window, generated if None.


	filter_name ({None, “hann”, “bartlett”, “blackman”, “hamming”,                  “nuttall”, “parzen”, “triang”}) – Apply a smoothing filter.


	pad (int, optional) – Apply padding before the FFT. The value is set to 10% of the image
width if None is given.


	pad_mode (str, optional) – Padding method. Full list can be found at numpy_pad documentation.


	apply_log (bool, optional) – Apply logarithm to sinogram before reconstruction.


	gpu (bool, optional) – Use GPU for computing if True.


	block (tuple of two integer-values, optional) – Size of a GPU block. E.g. (8, 8), (16, 16), (32, 32), …


	ncore (int or None) – Number of cpu-cores used for computing. Automatically selected if None.






	Returns

	array_like – Square array. Reconstructed image.










	
algotom.rec.reconstruction.generate_mapping_coordinate(width_sino, height_sino, width_rec, height_rec)

	Calculate coordinates in the sinogram space from coordinates in the
reconstruction space (in the Fourier domain). They are used for the
DFI (direct Fourier inversion) reconstruction method.


	Parameters

	
	width_sino (int) – Width of a sinogram image.


	height_sino (int) – Height of a sinogram image.


	width_rec (int) – Width of a reconstruction image.


	height_rec (int) – Height of a reconstruction image.






	Returns

	
	r_mat (array_like) – 2D array. Broadcast of the r-coordinates.


	theta_mat (array_like) – 2D array. Broadcast of the theta-coordinates.















	
algotom.rec.reconstruction.dfi_reconstruction(sinogram, center, angles=None, ratio=1.0, filter_name='hann', pad_rate=0.25, pad_mode='edge', apply_log=True, ncore=None)

	Apply the DFI (direct Fourier inversion) reconstruction method (Ref. [1])
to a sinogram-image or a chunk of sinogram-images. Angular axis is 0.
If input is 3D array, the slicing axis of sinograms must be 1,
e.g. data[:, index, :].


	Parameters

	
	sinogram (array_like) – 2D/3D array. Sinogram image.


	center (float) – Center of rotation.


	angles (array_like) – 1D array. List of angles (in radian) corresponding to the sinogram.


	ratio (float) – To apply a circle mask to the reconstructed image.


	filter_name ({None, “hann”, “bartlett”, “blackman”, “hamming”,                  “nuttall”, “parzen”, “triang”}) – Apply a smoothing filter.


	pad_rate (float) – To apply padding before the FFT. The padding width equals to
(pad_rate * image_width).


	pad_mode (str) – Padding method. Full list can be found at numpy_pad documentation.


	apply_log (bool) – Apply the logarithm function to the sinogram before reconstruction.


	ncore (int or None) – Number of cpu-cores used for computing. Automatically selected if None.






	Returns

	array_like – Square array. Reconstructed image.





References
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algotom.rec.reconstruction.gridrec_reconstruction(sinogram, center, angles=None, ratio=1.0, filter_name='shepp', apply_log=True, pad=100, filter_par=0.9, ncore=1)

	Apply the gridrec method to a sinogram-image or a chunk of sinogram-images.
Angular axis is 0. If input is 3D array, the slicing axis of sinograms
must be 1, e.g. data[:, index, :]. This is the wrapper of the gridrec
method implemented in the Tomopy package:
https://tomopy.readthedocs.io/en/latest/api/tomopy.recon.algorithm.html.
Users must install Tomopy before using this function.


	Parameters

	
	sinogram (array_like) – 2D/3D array. Sinogram image.


	center (float) – Center of rotation.


	angles (array_like) – 1D array. List of angles (radian) corresponding to the sinogram.


	ratio (float) – To apply a circle mask to the reconstructed image.


	filter_name (str or None) – Apply a smoothing filter. Full list is at:
https://github.com/tomopy/tomopy/blob/master/source/tomopy/recon/algorithm.py


	filter_par (float) – Adjust the strength of the filter. Smaller is stronger.


	apply_log (bool) – Apply the logarithm function to the sinogram before reconstruction.


	pad (bool or int) – Apply edge padding to the nearest power of 2.


	ncore (int or None) – Number of cpu-cores used for computing. Automatically selected if None.






	Returns

	array_like – Square array.










	
algotom.rec.reconstruction.astra_reconstruction(sinogram, center, angles=None, ratio=1.0, method='FBP_CUDA', num_iter=1, filter_name='hann', pad=None, apply_log=True, ncore=1)

	Wrapper of reconstruction methods implemented in the astra toolbox package.
https://www.astra-toolbox.com/docs/algs/index.html
Users must install Astra Toolbox before using this function.
Apply the method to a sinogram-image or a chunk of sinogram-images.
Angular axis is 0. If input is 3D array, the slicing axis of sinograms
must be 1, e.g. data[:, index, :]


	Parameters

	
	sinogram (array_like) – 2D/3D array. Sinogram image.


	center (float) – Center of rotation.


	angles (array_like) – 1D array. List of angles (radian) corresponding to the sinogram.


	ratio (float) – To apply a circle mask to the reconstructed image.


	method (str) – Reconstruction algorithms. For CPU: ‘FBP’, ‘SIRT’, ‘SART’, ‘ART’, and
‘CGLS’. For GPU: ‘FBP_CUDA’, ‘SIRT_CUDA’, ‘SART_CUDA’, and ‘CGLS_CUDA’.


	num_iter (int) – Number of iterations if using iteration methods.


	filter_name (str or None) – Apply filter if using FBP method. Options: ‘ram-lak’, ‘hamming’,
‘hann’, ‘lanczos’, ‘kaiser’, ‘parzen’,…


	pad (int) – Padding to reduce the side effect of FFT.


	apply_log (bool) – Apply the logarithm function to the sinogram before reconstruction.


	ncore (int or None) – Number of cpu-cores used for computing. Automatically selected if None.






	Returns

	array_like – Square array.










	
algotom.rec.reconstruction.find_center_based_slice_metric(sinogram, start, stop, step=0.5, metric='entropy', radius=2, zoom=1.0, method='fbp', gpu=True, angles=None, ratio=1.0, filter_name='hann', apply_log=True, ncore=None, sigma=0, invert_metric=False, metric_function=None, **kwargs)

	Find the center-of-rotation (COR) using metrics of reconstructed slices
at different CORs. The entropy of histogram (Ref. [1]) is used by default.
If customized metrics are used, the minimum value must be corresponding to
the optimal center.


	Parameters

	
	sinogram (array_like) – 2D array. Sinogram image.


	start (float) – Starting point for searching CoR.


	stop (float) – Ending point for searching CoR.


	step (float) – Sub-pixel searching step.


	metric ({“entropy”, “sharpness”}) – Which metric to use.


	radius (float) – Searching range with the sub-pixel step.


	zoom (float) – To resize the sinogram for fast coarse-searching. For example, 0.5 <=>
reduce the size of the image by half.


	method ({“dfi”, “gridrec”, “fbp”, “astra”}) – To select a backend method for reconstruction.


	gpu (bool, optional) – Use GPU for computing if True.


	angles (array_like, optional) – 1D array. List of angles (in radian) corresponding to the sinogram.


	ratio (float, optional) – To apply a circle mask to the reconstructed image.


	filter_name ({None, “hann”, “bartlett”, “blackman”, “hamming”,                  “nuttall”, “parzen”, “triang”}) – Apply a smoothing filter before reconstruction.


	apply_log (bool, optional) – Apply the logarithm function to the sinogram before reconstruction.


	ncore (int or None) – Number of cpu-cores used for computing. Automatically selected if None.


	sigma (int) – Denoising the sinogram before reconstruction.


	invert_metric (bool) – Invert the metric scale, used with a custom metric-function.


	metric_function (obj) – Custom function to calculate metric, accepts keyword arguments
(** kwargs).






	Returns

	float – Center-of-rotation.





References
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algotom.rec.reconstruction.find_center_visual_slices(sinogram, output, start, stop, step=1, zoom=0.5, method='fbp', gpu=False, angles=None, ratio=1.0, filter_name='hann', apply_log=True, ncore=None, display=False)

	For visually finding the center-of-rotation (COR) using reconstructed
slices at different CORs.


	Parameters

	
	sinogram (array_like) – 2D array. Sinogram image.


	output (str) – Base folder for saving reconstructed slices.


	start (float) – Starting point for searching CoR.


	stop (float) – Ending point for searching CoR.


	step (float) – Searching step.


	zoom (float) – To resize input and output images. For example, 0.5 <=> reduce the
size of images by half.


	method ({“dfi”, “gridrec”, “fbp”, “astra”}) – To select a backend method for reconstruction.


	gpu (bool, optional) – Use GPU for computing if True.


	angles (array_like, optional) – 1D array. List of angles (in radian) corresponding to the sinogram.


	ratio (float, optional) – To apply a circle mask to the reconstructed image.


	filter_name ({None, “hann”, “bartlett”, “blackman”, “hamming”,                  “nuttall”, “parzen”, “triang”}) – Apply a smoothing filter.


	apply_log (bool, optional) – Apply the logarithm function to the sinogram before reconstruction.


	ncore (int or None) – Number of cpu-cores used for computing. Automatically selected if None.


	display (bool) – Print the output if True.






	Returns

	str – Folder path to tif images.













            

          

      

      

    

  

    
      
          
            
  
7.4.1. algotom.post.postprocessing

Module of methods in the postprocessing stage:



	Get statistical information of reconstructed images or a dataset.


	Downsample 2D, 3D array, or a dataset.


	Rescale 2D, 3D array or a dataset to 8-bit or 16-bit data-type.


	Reslice 3D array or a dataset (hdf/nxs file or tif images).


	Removing ring artifacts in a reconstructed image by transform back and
forth between the polar coordinates and the Cartesian coordinates.







Functions:







	get_statistical_information(mat[, ...])

	Get statistical information of an image.



	get_statistical_information_dataset(input_)

	Get statical information of a dataset.



	downsample(mat, cell_size[, method])

	Downsample an image.



	downsample_dataset(input_, output, cell_size)

	Downsample a dataset.



	rescale(mat[, nbit, minmax])

	Rescale a 32-bit array to 16-bit/8-bit data.



	rescale_dataset(input_, output[, nbit, ...])

	Rescale a dataset to 8-bit or 16-bit data-type.



	reslice_dataset(input_, output[, axis, ...])

	Reslice a 3d dataset.



	remove_ring_based_fft(mat[, u, n, v, sort])

	Remove ring artifacts in the reconstructed image by combining the polar transform and the fft-based method.



	remove_ring_based_wavelet_fft(mat[, level, ...])

	Remove ring artifacts in a reconstructed image by combining the polar transform and the wavelet-fft-based method (Ref.







	
algotom.post.postprocessing.get_statistical_information(mat, percentile=(0, 100), denoise=False)

	Get statistical information of an image.


	Parameters

	
	mat (array_like) – 2D array. Projection image, sinogram image, or reconstructed image.


	percentile (tuple of floats) – Tuple of (min_percentile, max_percentile) to compute.
Must be between 0 and 100 inclusive.


	denoise (bool, optional) – Enable/disable denoising before extracting statistical information.






	Returns

	
	gmin (float) – The minimum value of the data array.


	gmax (float) – The maximum value of the data array.


	min_percent (float) – The first computed percentile of the data array.


	max_percent (tuple of floats) – The last computed percentile of the data array.


	mean (float) – The mean of the data array.


	median (float) – The median of the data array.


	variance (float) – The variance of the data array.















	
algotom.post.postprocessing.get_statistical_information_dataset(input_, percentile=(0, 100), skip=5, denoise=False, key_path=None, crop=(0, 0, 0, 0, 0, 0))

	Get statical information of a dataset. This can be a folder of tif files,
a hdf file, or a 3D array.


	Parameters

	
	input_ (str, hdf file, or array_like) – It can be a folder path to tif files, a hdf file, or a 3D array.


	percentile (tuple of floats) – Tuple of (min_percentile, max_percentile) to compute.
Must be between 0 and 100 inclusive.


	skip (int) – Skipping step of reading input.


	denoise (bool, optional) – Enable/disable denoising before extracting statistical information.


	key_path (str, optional) – Key path to the dataset if input is a hdf file.


	crop (tuple of int, optional) – Crop 3D data from the edges, i.e.
crop = (crop_depth1, crop_depth2, crop_height1, crop_height2,
crop_width1, crop_width2).






	Returns

	
	gmin (float) – The global minimum value of the data array.


	gmax (float) – The global maximum value of the data array.


	min_percent (float) – The global min of the first computed percentile of the data array.


	max_percent (tuple of floats) – The global min of the last computed percentile of the data array.


	mean (float) – The mean of the data array.


	median (float) – The median of the data array.


	variance (float) – The mean of the variance of the data array.















	
algotom.post.postprocessing.downsample(mat, cell_size, method='mean')

	Downsample an image.


	Parameters

	
	mat (array_like) – 2D array.


	cell_size (int or tuple of int) – Window size along axes used for grouping pixels.


	method ({“mean”, “median”, “max”, “min”}) – Downsampling method.






	Returns

	array_like – Downsampled image.










	
algotom.post.postprocessing.rescale(mat, nbit=16, minmax=None)

	Rescale a 32-bit array to 16-bit/8-bit data.


	Parameters

	
	mat (array_like)


	nbit ({8,16}) – Rescaled data-type: 8-bit or 16-bit.


	minmax (tuple of float, or None) – Minimum and maximum values used for rescaling.






	Returns

	array_like – Rescaled array.










	
algotom.post.postprocessing.downsample_dataset(input_, output, cell_size, method='mean', key_path=None, rescaling=False, nbit=16, minmax=None, skip=None, crop=(0, 0, 0, 0, 0, 0), overwrite=False)

	Downsample a dataset. Input can be a folder of tif files, a hdf file,
or a 3D array.


	Parameters

	
	input_ (str, array_like) – It can be a folder path to tif files, a hdf file, or a 3D array.


	output (str, None) – It can be a folder path, a hdf file path, or None (memory consuming).


	cell_size (int or tuple of int) – Window size along axes used for grouping pixels.


	method ({“mean”, “median”, “max”, “min”}) – Downsampling method.


	key_path (str, optional) – Key path to the dataset if the input is a hdf file.


	rescaling (bool) – Rescale dataset if True.


	nbit ({8,16}) – If rescaling is True, select data-type: 8-bit or 16-bit.


	minmax (tuple of float, or None) – Minimum and maximum values used for rescaling if True.


	skip (int or None) – Skipping step of images used for getting statistical information if
rescaling is True and input is 32-bit data.


	crop (tuple of int, optional) – Crop 3D data from the edges, i.e.
crop = (crop_depth1, crop_depth2, crop_height1, crop_height2,
crop_width1, crop_width2).


	overwrite (bool) – Overwrite an existing file/folder if True.






	Returns

	array_like or None – If output is None, returning a 3D array.










	
algotom.post.postprocessing.rescale_dataset(input_, output, nbit=16, minmax=None, skip=None, key_path=None, crop=(0, 0, 0, 0, 0, 0), overwrite=False)

	Rescale a dataset to 8-bit or 16-bit data-type. The dataset can be a
folder of tif files, a hdf file, or a 3D array.


	Parameters

	
	input_ (str, array_like) – It can be a folder path to tif files, a hdf file, or 3D array.


	output (str, None) – It can be a folder path, a hdf file path, or None (memory consuming).


	nbit ({8,16,32}) – Select rescaled data-type: 8-bit/16-bit. 32 is for cropping data only.


	minmax (tuple of float, or None) – Minimum and maximum values used for rescaling. They are calculated if
None is given.


	skip (int or None) – Skipping step of images used for getting statistical information.


	key_path (str, optional) – Key path to the dataset if the input is a hdf file.


	crop (tuple of int, optional) – Crop 3D data from the edges, i.e.
crop = (crop_depth1, crop_depth2, crop_height1, crop_height2,
crop_width1, crop_width2).


	overwrite (bool) – Overwrite an existing file/folder if True.






	Returns

	array_like or None – If output is None, returning an 3D array.










	
algotom.post.postprocessing.reslice_dataset(input_, output, axis=1, key_path=None, rescaling=False, nbit=16, minmax=None, skip=None, rotate=0.0, chunk=16, mode='constant', crop=(0, 0, 0, 0, 0, 0), ncore=None, show_progress=True, overwrite=False)

	Reslice a 3d dataset. Input can be a folder of tif files or a hdf file.


	Parameters

	
	input_ (str, array_like) – It can be a folder path to tif files or a hdf file.


	output (str) – It can be a folder path (for generated tif-files) or a hdf file-path.


	axis ({1,2}) – Slicing axis. This axis becomes the 0-axis of the output.


	key_path (str, optional) – Key path to the dataset if the input is a hdf file.


	rescaling (bool) – Rescale dataset if True.


	nbit ({8,16}) – If rescaling is True, select data-type: 8-bit or 16-bit.


	minmax (tuple of float, or None) – Minimum and maximum values used for rescaling if True.


	skip (int or None) – Skipping step of images used for getting statistical information if
rescaling is True and input is 32-bit data.


	rotate (float) – Rotate image (degree). Positive direction is counterclockwise.


	chunk (int) – Number of images to be loaded/saved in one go to reduce IO overhead.


	mode ({‘reflect’, ‘grid-mirror’, ‘constant’, ‘grid-constant’,            ‘nearest’, ‘mirror’, ‘grid-wrap’, ‘wrap’}) – Select how the input array is extended beyond its boundaries.


	crop (tuple of int, optional) – Crop 3D data from the edges, i.e.
crop = (crop_depth1, crop_depth2, crop_height1, crop_height2,
crop_width1, crop_width2). Cropping is done before reslicing.


	ncore (int or None) – Number of cpu-cores. Automatically selected if None.


	show_progress (bool) – Show the progress of reslicing data if True.


	overwrite (bool) – Overwrite an existing file/folder if True.






	Returns

	array_like or None – If output is None, returning a 3D array.










	
algotom.post.postprocessing.remove_ring_based_fft(mat, u=20, n=8, v=1, sort=False)

	Remove ring artifacts in the reconstructed image by combining the polar
transform and the fft-based method.


	Parameters

	
	mat (array_like) – Square array. Reconstructed image


	u (int) – Cutoff frequency.


	n (int) – Filter order.


	v (int) – Number of rows (* 2) to be applied the filter.


	sort (bool, optional) – Apply sorting (Ref. [2]) if True.






	Returns

	array_like – Ring-removed image.





References

[1] : https://doi.org/10.1063/1.1149043

[2] : https://doi.org/10.1364/OE.26.028396






	
algotom.post.postprocessing.remove_ring_based_wavelet_fft(mat, level=5, size=1, wavelet_name='db9', sort=False)

	Remove ring artifacts in a reconstructed image by combining the polar
transform and the wavelet-fft-based method (Ref. [1]).


	Parameters

	
	mat (array_like) – Square array. Reconstructed image


	level (int) – Wavelet decomposition level.


	size (int) – Damping parameter. Larger is stronger.


	wavelet_name (str) – Name of a wavelet. Search pywavelets API for a full list.


	sort (bool, optional) – Apply sorting (Ref. [2]) if True.






	Returns

	array_like – Ring-removed image.





References

[1] : https://doi.org/10.1364/OE.17.008567

[2] : https://doi.org/10.1364/OE.26.028396









            

          

      

      

    

  

    
      
          
            
  
7.5.1. algotom.util.calibration

Module of calibration methods:



	Correcting the non-uniform background of an image.


	Binarizing an image.


	Calculating the distance between two point-like objects segmented from
two images. Useful for determining pixel-size in helical scans.


	Find the tilt and roll of a parallel-beam tomography system given
coordinates of a point-like object scanned in the range of
[0, 360] degrees.







Functions:







	normalize_background(mat[, size])

	Correct a non-uniform background of an image using the median filter.



	normalize_background_based_fft(mat[, sigma, ...])

	Correct a non-uniform background of an image using a Fourier Gaussian filter.



	invert_dot_contrast(mat)

	Invert the contrast of a 2D binary array to make sure that a dot is white.



	calculate_threshold(mat[, bgr])

	Calculate threshold value based on Algorithm 4 in Ref.



	binarize_image(mat[, threshold, bgr, norm, ...])

	Binarize an image.



	get_dot_size(mat[, size_opt])

	Get size of binary dots given the option.



	check_dot_size(mat, min_size, max_size)

	Check if the size of a dot is in a range.



	select_dot_based_size(mat, dot_size[, ratio])

	Select dots having a certain size.



	calculate_distance(mat1, mat2[, size_opt, ...])

	Calculate the distance between two point-like objects segmented from two images.



	fit_points_to_ellipse(x, y)

	Fit an ellipse to a set of points.



	find_tilt_roll(x, y[, method])

	Find the tilt and roll of a parallel-beam tomography system given coordinates of a point-like object scanned in the range of [0, 360] degrees.







	
algotom.util.calibration.normalize_background(mat, size=51)

	Correct a non-uniform background of an image using the median filter.


	Parameters

	
	mat (array_like) – 2D array.


	size (int) – Size of the median filter.






	Returns

	array_like – 2D array. Corrected image.










	
algotom.util.calibration.normalize_background_based_fft(mat, sigma=5, pad=None, mode='reflect')

	Correct a non-uniform background of an image using a Fourier Gaussian
filter.


	Parameters

	
	mat (array_like) – 2D array.


	sigma (int) – Sigma of the Gaussian.


	pad (int) – Padding for the Fourier transform.


	mode (str, list of str, or tuple of str) – Padding method. One of options : ‘reflect’, ‘edge’, ‘constant’. Full
list is at:
https://numpy.org/doc/stable/reference/generated/numpy.pad.html






	Returns

	array_like – 2D array. Corrected image.










	
algotom.util.calibration.invert_dot_contrast(mat)

	Invert the contrast of a 2D binary array to make sure that a dot is white.


	Parameters

	mat (array_like) – 2D binary array.



	Returns

	array_like – 2D array.










	
algotom.util.calibration.calculate_threshold(mat, bgr='bright')

	Calculate threshold value based on Algorithm 4 in Ref. [1].


	Parameters

	
	mat (array_like) – 2D array.


	bgr ({“bright”, “dark”}) – To indicate the brightness of the background against image features.






	Returns

	float – Threshold value.





References

[1] : https://doi.org/10.1364/OE.26.028396






	
algotom.util.calibration.binarize_image(mat, threshold=None, bgr='bright', norm=False, denoise=True, invert=True)

	Binarize an image.


	Parameters

	
	mat (array_like) – 2D array.


	threshold (float, optional) – Threshold value for binarization. Automatically calculated using
Algorithm 4 in Ref. [1] if None.


	bgr ({“bright”, “dark”}) – To indicate the brightness of the background against image features.


	norm (bool, optional) – Apply normalization if True.


	denoise (bool, optional) – Apply denoising if True.


	invert (bool, optional) – Invert the contrast if needed.






	Returns

	array_like – 2D binary array.





References

[1] : https://doi.org/10.1364/OE.26.028396






	
algotom.util.calibration.get_dot_size(mat, size_opt='max')

	Get size of binary dots given the option.


	Parameters

	
	mat (array_like) – 2D binary array.


	size_opt ({“max”, “min”, “median”, “mean”}) – Select options.






	Returns

	dot_size (float) – Size of the dot.










	
algotom.util.calibration.check_dot_size(mat, min_size, max_size)

	Check if the size of a dot is in a range.


	Parameters

	
	mat (array_like) – 2D array.


	min_size (float) – Minimum size.


	max_size (float) – Maximum size.






	Returns

	bool










	
algotom.util.calibration.select_dot_based_size(mat, dot_size, ratio=0.01)

	Select dots having a certain size.


	Parameters

	
	mat (array_like) – 2D array.


	dot_size (float) – Size of the standard dot.


	ratio (float) – Used to calculate the acceptable range.
[dot_size - ratio*dot_size; dot_size + ratio*dot_size]






	Returns

	array_like – 2D array. Selected dots.










	
algotom.util.calibration.calculate_distance(mat1, mat2, size_opt='max', threshold=None, bgr='bright', norm=False, denoise=True, invert=True)

	Calculate the distance between two point-like objects segmented from
two images. Useful for measuring pixel-size in helical scans (Ref. [1]).


	Parameters

	
	mat1 (array_like) – 2D array.


	mat2 (array_like) – 2D array.


	size_opt ({“max”, “min”, “median”, “mean”}) – Options to select binary objects based on their size.


	threshold (float, optional) – Threshold value for binarization. Automatically calculated using
Algorithm 4 in Ref. [2] if None.


	bgr ({“bright”, “dark”}) – To indicate the brightness of the background against image features.


	norm (bool, optional) – Apply normalization if True.


	denoise (bool, optional) – Apply denoising if True.


	invert (bool, optional) – Invert the contrast if needed.








References

[1] : https://doi.org/10.1364/OE.418448

[2] : https://doi.org/10.1364/OE.26.028396






	
algotom.util.calibration.fit_points_to_ellipse(x, y)

	Fit an ellipse to a set of points.


	Parameters

	
	x (ndarray) – x-coordinates of the points.


	y (ndarray) – y-coordinates of the points.






	Returns

	
	roll_angle (float) – Rotation angle of the ellipse in degree.


	a_major (float) – Length of the major axis.


	b_minor (float) – Length of the minor axis.


	xc (float) – x-coordinate of the ellipse center.


	yc (float) – y-coordinate of the ellipse center.















	
algotom.util.calibration.find_tilt_roll_based_linear_fit(x, y)

	Find the tilt and roll of a parallel-beam tomography system given
coordinates of a point-like object scanned in the range of
[0, 360] degrees. Uses a linear-fit-based approach [1].


	Parameters

	
	x (ndarray) – x-coordinates of the points.


	y (ndarray) – y-coordinates of the points.






	Returns

	
	tilt (float) – Tilt angle in degree.


	roll (float) – Roll angle in degree.










References

[1] : https://doi.org/10.1098/rsta.2014.0398






	
algotom.util.calibration.find_tilt_roll_based_ellipse_fit(x, y)

	Find the tilt and roll of a parallel-beam tomography system given
coordinates of a point-like object scanned in the range of
[0, 360] degrees. Uses an ellipse-fit-based approach.


	Parameters

	
	x (ndarray) – x-coordinates of the points.


	y (ndarray) – y-coordinates of the points.






	Returns

	
	tilt (float) – Tilt angle in degree.


	roll (float) – Roll angle in degree.















	
algotom.util.calibration.find_tilt_roll(x, y, method='ellipse')

	Find the tilt and roll of a parallel-beam tomography system given
coordinates of a point-like object scanned in the range of
[0, 360] degrees.


	Parameters

	
	x (ndarray) – x-coordinates of the points.


	y (ndarray) – y-coordinates of the points.


	method ({“linear”, “ellipse”}) – Method for finding tilt and roll.






	Returns

	
	tilt (float) – Tilt angle in degree.


	roll (float) – Roll angle in degree.


















            

          

      

      

    

  

    
      
          
            
  
7.5.2. algotom.util.simulation

Module of simulation methods:



	Methods for designing a customized 2D phantom.


	Method for calculating a sinogram of a phantom based on the Fourier
slice theorem.


	Methods for adding artifacts to a simulated sinogram.







Functions:







	make_elliptic_mask(size, center, length, angle)

	Create an elliptic mask.



	make_rectangular_mask(size, center, length, ...)

	Create a rectangular mask.



	make_triangular_mask(size, center, length, angle)

	Create an isosceles triangle mask.



	make_line_target(size)

	Create line patterns for testing the resolution of a reconstructed image.



	make_face_phantom(size)

	Create a face phantom for testing reconstruction methods.



	make_sinogram(mat, angles[, pad_rate, pad_mode])

	Create a sinogram (series of 1D projections) from a 2D image based on the Fourier slice theorem (Ref.



	add_noise(mat[, noise_ratio])

	Add Gaussian noise to an image.



	add_stripe_artifact(sinogram, size, position)

	Add stripe artifacts to a sinogram.



	convert_to_Xray_image(sinogram[, global_max])

	Convert a simulated sinogram to an equivalent X-ray image.



	add_background_fluctuation(sinogram[, ...])

	Fluctuate the background of a sinogram image using a Gaussian profile beam.







	
algotom.util.simulation.make_elliptic_mask(size, center, length, angle)

	Create an elliptic mask.


	Parameters

	
	size (int) – Size of a square array.


	center (float or tuple of float) – Ellipse center.


	length (float or tuple of float) – Lengths of ellipse axes.


	angle (float) – Rotation angle (Degree) of the ellipse.






	Returns

	array_like – Square array.










	
algotom.util.simulation.make_rectangular_mask(size, center, length, angle)

	Create a rectangular mask.


	Parameters

	
	size (int) – Size of a square array.


	center (float or tuple of float) – Center of the mask.


	length (float or tuple of float) – Lengths of the rectangular mask.


	angle (float) – Rotation angle (Degree) of the mask.






	Returns

	array_like – Square array.










	
algotom.util.simulation.make_triangular_mask(size, center, length, angle)

	Create an isosceles triangle mask.


	Parameters

	
	size (int) – Size of a square array.


	center (float or tuple of float) – Center of the mask.


	length (float or tuple of float) – Lengths of the mask.


	angle (float) – Rotation angle (Degree) of the mask.






	Returns

	array_like – Square array.










	
algotom.util.simulation.make_line_target(size)

	Create line patterns for testing the resolution of a reconstructed image.


	Parameters

	size (int) – Size of a square array.



	Returns

	array_like – Square array.










	
algotom.util.simulation.make_face_phantom(size)

	Create a face phantom for testing reconstruction methods.


	Parameters

	size (int) – Size of a square array.



	Returns

	array_like – Square array.










	
algotom.util.simulation.make_sinogram(mat, angles, pad_rate=0.5, pad_mode='edge')

	Create a sinogram (series of 1D projections) from a 2D image based on the
Fourier slice theorem (Ref. [1]).


	Parameters

	
	mat (array_like) – Square array.


	angles (array_like) – 1D array. List of angles (in radian) for projecting.


	pad_rate (float) – To apply padding before the FFT. The padding width equals to
(pad_rate * image_width).


	pad_mode (str) – Padding method. Full list can be found at numpy_pad documentation.








References

[1] : https://doi.org/10.1071/PH560198






	
algotom.util.simulation.add_noise(mat, noise_ratio=0.1)

	Add Gaussian noise to an image.


	Parameters

	
	mat (array_like) – 2D array


	noise_ratio (float) – Ratio between the noise level and the mean of the array.






	Returns

	array_like










	
algotom.util.simulation.add_stripe_artifact(sinogram, size, position, strength_ratio=0.2, stripe_type='partial')

	Add stripe artifacts to a sinogram.


	Parameters

	
	sinogram (array_like) – 2D array. Sinogram image.


	size (int) – Size of stripe artifact.


	position (int) – Position of the stripe.


	strength_ratio (float) – To define the strength of the artifact. The value is in the range of
[0.0, 1.0].


	stripe_type ({“partial”, “full”, “dead”, “fluctuating”}) – Type of stripe as classified in Ref. [1].






	Returns

	array_like





References

[1] : https://doi.org/10.1364/OE.26.028396






	
algotom.util.simulation.convert_to_Xray_image(sinogram, global_max=None)

	Convert a simulated sinogram to an equivalent X-ray image.


	Parameters

	
	sinogram (array_like) – 2D array.


	global_max (float) – Maximum value used for normalizing array values to stay in the range
of [0.0, 1.0].






	Returns

	array_like










	
algotom.util.simulation.add_background_fluctuation(sinogram, strength_ratio=0.2)

	Fluctuate the background of a sinogram image using a Gaussian profile beam.


	Parameters

	
	sinogram (array_like) – 2D array. Sinogram image.


	strength_ratio (float) – To define the strength of the variation. The value is in the range of
[0.0, 1.0].






	Returns

	array_like













            

          

      

      

    

  

    
      
          
            
  
7.5.3. algotom.util.utility

Module of utility methods:



	Methods for parallel computing, geometric transformation, masking.


	
	Methods for customizing stripe/ring removal methods
	
	sort_forward


	sort_backward


	separate_frequency_component


	generate_fitted_image


	detect_stripe


	calculate_regularization_coefficient


	make_2d_butterworth_window


	make_2d_damping_window


	apply_wavelet_decomposition


	apply_wavelet_reconstruction


	apply_filter_to_wavelet_component


	interpolate_inside_stripe


	transform_slice_forward


	transform_slice_backward










	
	Customized smoothing filters:
	
	apply_gaussian_filter (in the Fourier space)


	apply_regularization_filter










	
	Methods for grid scans:
	
	detect_sample


	fix_non_sample_areas


	locate_slice


	locate_slice_chunk










	
	Methods for speckle-based tomography
	
	generate_spiral_positions










	
	Method for finding the center of rotation by visual inspection.
	
	find_center_visual_sinograms















Functions:







	parallel_process_slices(data, method, parameters)

	Apply a processing method to slices of a 3D array in parallel.



	mapping(mat, x_mat, y_mat[, order, mode])

	Apply a geometric transformation to a 2D array



	make_circle_mask(width, ratio)

	Create a circle mask.



	sort_forward(mat[, axis])

	Sort gray-scales of an image along an axis.



	sort_backward(mat, mat_index[, axis])

	Sort gray-scales of an image using an index array provided.



	separate_frequency_component(mat[, axis, window])

	Separate low and high frequency components of an image along an axis.



	generate_fitted_image(mat, order[, axis, ...])

	Apply a polynomial fitting along an axis of an image.



	detect_stripe(list_data, snr)

	Locate stripe positions using Algorithm 4 in Ref.



	calculate_regularization_coefficient(width, ...)

	Calculate coefficients used for the regularization-based method.



	make_2d_butterworth_window(width, height, u, ...)

	Create a 2d window from the 1D Butterworth window.



	make_2d_damping_window(width, height, size)

	Make 2D damping window from a list of 1D window for a Fourier-space filter, i.e. a high-pass filter.



	apply_wavelet_decomposition(mat, wavelet_name)

	Apply 2D wavelet decomposition.



	apply_wavelet_reconstruction(data, wavelet_name)

	Apply 2D wavelet reconstruction.



	apply_filter_to_wavelet_component(data[, ...])

	Apply a filter to a component of the wavelet decomposition of an image.



	interpolate_inside_stripe(mat, list_mask[, kind])

	Interpolate gray-scales inside vertical stripes of an image.



	rectangular_from_polar(width_reg, ...)

	Generate coordinates of a rectangular grid from polar coordinates.



	polar_from_rectangular(width_pol, ...)

	Generate polar coordinates from grid coordinates.



	transform_slice_forward(mat[, coord_mat])

	Transform a reconstructed image into polar coordinates.



	transform_slice_backward(mat[, coord_mat])

	Transform a reconstructed image in polar coordinates back to rectangular coordinates.



	make_2d_gaussian_window(height, width, ...)

	Create a 2D Gaussian window.



	apply_gaussian_filter(mat, sigma_x, sigma_y)

	Filtering an image in the Fourier domain using a 2D Gaussian window.



	apply_regularization_filter(mat, alpha[, ...])

	Apply a regularization filter using the method in Ref.



	transform_1d_window_to_2d(win_1d[, order, mode])

	Transform a 1d-window to 2d-window.



	detect_sample(sinogram[, sino_type])

	To check if there is a sample in a sinogram using the "double-wedge" property of the Fourier transform of the sinogram (Ref.



	fix_non_sample_areas(overlap_metadata[, ...])

	Used to fix overlap values of grid-cells without sample by copying from its neighbours.



	locate_slice(slice_idx, height, overlap_metadata)

	Locate slice indices in grid-rows given a slice index of the reconstruction data as a whole.



	locate_slice_chunk(slice_start, slice_stop, ...)

	Locate slice indices in grid-rows given slice indices of the reconstruction data as a whole.



	generate_spiral_positions(step, num_pos, ...)

	Generate Fermat spiral positions.



	find_center_visual_sinograms(sino_180, ...)

	For visually finding the center-of-rotation (COR) using converted 360-degree sinograms from a 180-degree sinogram at different CORs (Ref.







	
algotom.util.utility.parallel_process_slices(data, method, parameters, axis=1, ncore=None, prefer='threads', **kwargs)

	Apply a processing method to slices of a 3D array in parallel.


	Parameters

	
	data (array_like or hdf object) – 3D data array or HDF dataset.


	method (callable) – Function to apply to each slice.


	parameters (list) – List of positional parameters for the method.


	axis (int) – Axis along which the method is applied.


	ncore (int, optional) – Number of cpu-cores used for computing. Automatically selected if None.


	prefer ({“threads”, “processes”}) – Preferred parallel backend (“threads” for I/O bound tasks or
“processes” for CPU-bound tasks).


	**kwargs (dict) – Additional keyword parameters to pass to the method.






	Returns

	array_like – Same axis-definition as the input.










	
algotom.util.utility.apply_method_to_multiple_sinograms(*args, **kwargs)

	




	
algotom.util.utility.mapping(mat, x_mat, y_mat, order=1, mode='reflect')

	Apply a geometric transformation to a 2D array


	Parameters

	
	mat (array_like) – 2D array.


	x_mat (array_like) – 2D array of the x-coordinates.


	y_mat (array_like) – 2D array of the y-coordinates.


	order (int, optional) – The order of the spline interpolation, default is 1.
The order has to be in the range 0-5.


	mode ({‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional) – The mode parameter determines how the input array is extended beyond
its boundaries. Default is ‘reflect’.






	Returns

	array_like – 2D array.










	
algotom.util.utility.make_circle_mask(width, ratio)

	Create a circle mask.


	Parameters

	
	width (int) – Width of a square array.


	ratio (float) – Ratio between the diameter of the mask and the width of the array.






	Returns

	array_like – Square array.










	
algotom.util.utility.sort_forward(mat, axis=0)

	Sort gray-scales of an image along an axis.
e.g. axis=0 is to sort along each column.


	Parameters

	
	mat (array_like) – 2D array.


	axis (int) – Axis along which to sort.






	Returns

	
	mat_sort (array_like) – 2D array. Sorted image.


	mat_index (array_like) – 2D array. Index array used for sorting backward.















	
algotom.util.utility.sort_backward(mat, mat_index, axis=0)

	Sort gray-scales of an image using an index array provided.
e.g. axis=0 is to sort each column.


	Parameters

	
	mat (array_like) – 2D array.


	mat_index (array_like) – 2D array. Index array used for sorting.


	axis (int) – Axis along which to sort.






	Returns

	mat_sort (array_like) – 2D array. Sorted image.










	
algotom.util.utility.separate_frequency_component(mat, axis=0, window=None)

	Separate low and high frequency components of an image along an axis.
e.g. axis=0 is to apply the separation to each column.


	Parameters

	
	mat (array_like) – 2D array.


	axis (int) – Axis along which to apply the filter.


	window (array_like or dict) – 1D array or a dictionary which given the name of a window in
the scipy_window list and its parameters (without window-length).
E.g window={“name”: “gaussian”, “sigma”: 5}






	Returns

	
	mat_low (array_like) – 2D array. Low-frequency image.


	mat_high (array_like) – 2D array. High-frequency image.















	
algotom.util.utility.generate_fitted_image(mat, order, axis=0, num_chunk=1)

	Apply a polynomial fitting along an axis of an image.
e.g. axis=0 is to apply the fitting to each column.


	Parameters

	
	mat (array_like) – 2D array.


	order (int) – Order of the polynomial used to fit.


	axis (int) – Axis along which to apply the filter.


	num_chunk (int) – Number of chunks of rows or columns to apply the fitting.






	Returns

	mat_fit (array_like)










	
algotom.util.utility.detect_stripe(list_data, snr)

	Locate stripe positions using Algorithm 4 in Ref. [1]


	Parameters

	
	list_data (array_like) – 1D array. Normalized data.


	snr (float) – Ratio (>1.0) for stripe detection. Greater is less sensitive.






	Returns

	array_like – 1D binary mask.





References

[1] : https://doi.org/10.1364/OE.26.028396






	
algotom.util.utility.calculate_regularization_coefficient(width, alpha)

	Calculate coefficients used for the regularization-based method.
Eq. (7) in Ref. [1].


	Parameters

	
	width (int) – Width of a square array.


	alpha (float) – Regularization parameter.






	Returns

	float – Square array.





References

[1] : https://doi.org/10.1016/j.aml.2010.08.022






	
algotom.util.utility.make_2d_butterworth_window(width, height, u, v, n)

	Create a 2d window from the 1D Butterworth window.


	Parameters

	
	height (int) – Height of the window.


	width (int) – Width of the window.


	u (int) – Cutoff frequency.


	n (int) – Filter order.


	v (int) – Number of rows (= 2*v) around the height middle are the
1D Butterworth windows.






	Returns

	array_like – 2D array.










	
algotom.util.utility.make_2d_damping_window(width, height, size, window_name='gaussian')

	Make 2D damping window from a list of 1D window for a Fourier-space filter,
i.e. a high-pass filter.


	Parameters

	
	height (int) – Height of the window.


	width (int) – Width of the window.


	size (int) – Sigma of a Gaussian window or cutoff frequency of a Butterworth window.


	window_name (str, optional) – Two options: “gaussian” or “butter”.






	Returns

	array_like – 2D array of the window.










	
algotom.util.utility.apply_wavelet_decomposition(mat, wavelet_name, level=None)

	Apply 2D wavelet decomposition.


	Parameters

	
	mat (array_like) – 2D array.


	wavelet_name (str) – Name of a wavelet. E.g. “db5”


	level (int, optional) – Decomposition level. It is constrained to return an array with
a minimum size of larger than 16 pixels.






	Returns

	list – The first element is an 2D-array, next elements are tuples of three
2D-arrays. i.e [mat_n, (cH_level_n, cV_level_n, cD_level_n), …,
(cH_level_1, cV_level_1, cD_level_1)]










	
algotom.util.utility.apply_wavelet_reconstruction(data, wavelet_name, ignore_level=None)

	Apply 2D wavelet reconstruction.


	Parameters

	
	data (list or tuple) – The first element is an 2D-array, next elements are tuples of three
2D-arrays. i.e [mat_n, (cH_level_n, cV_level_n, cD_level_n), …,
(cH_level_1, cV_level_1, cD_level_1)].


	wavelet_name (str) – Name of a wavelet. E.g. “db5”


	ignore_level (int, optional) – Decomposition level to be ignored for reconstruction.






	Returns

	array_like – 2D array. Note that the sizes of the array are always even numbers.










	
algotom.util.utility.check_level(level, n_level)

	Supplementary method for the method of “apply_filter_to_wavelet_component”.
To check if the provided level is in the right format.






	
algotom.util.utility.apply_filter_to_wavelet_component(data, level=None, order=1, method=None, para=None)

	Apply a filter to a component of the wavelet decomposition of an image.


	Parameters

	
	data (list or tuple) – The first element is an 2D-array, next elements are tuples of three
2D-arrays. i.e [mat_n, (cH_level_n, cV_level_n, cD_level_n), …,
(cH_level_1, cV_level_1, cD_level_1)].


	level (int, list of int, or None) – Decomposition level to be applied the filter.


	order ({0, 1, 2}) – Specify which component in a tuple,
(cH_level_n, cV_level_n, cD_level_n), to be filtered.


	method (str) – Name of the filter in the namespace. E.g. method=”gaussian_filter”


	para (list or tuple) – Parameters of the filter. E.g para=[(1,11)]






	Returns

	list or tuple – The first element is an 2D-array, next elements are tuples of three
2D-arrays. i.e [mat_n, (cH_level_n, cV_level_n, cD_level_n), …,
(cH_level_1, cV_level_1, cD_level_1)].










	
algotom.util.utility.interpolate_inside_stripe(mat, list_mask, kind='linear')

	Interpolate gray-scales inside vertical stripes of an image. Stripe
locations given by a binary 1D-mask.


	Parameters

	
	mat (array_like) – 2D array.


	list_mask (array_like) – 1D array. Must equal the width of an image.


	kind ({‘linear’, ‘cubic’, ‘quintic’}, optional) – The kind of spline interpolation to use. Default is ‘linear’.






	Returns

	array_like










	
algotom.util.utility.rectangular_from_polar(width_reg, height_reg, width_pol, height_pol)

	Generate coordinates of a rectangular grid from polar coordinates.


	Parameters

	
	width_reg (int) – Width of an image in the Cartesian coordinate system.


	height_reg (int) – Height of an image in the Cartesian coordinate system.


	width_pol (int) – Width of an image in the polar coordinate system.


	height_pol (int) – Height of an image in the polar coordinate system.






	Returns

	
	x_mat (array_like) – 2D array. Broadcast of the x-coordinates.


	y_mat (array_like) – 2D array. Broadcast of the y-coordinates.















	
algotom.util.utility.polar_from_rectangular(width_pol, height_pol, width_reg, height_reg)

	Generate polar coordinates from grid coordinates.


	Parameters

	
	width_pol (int) – Width of an image in the polar coordinate system.


	height_pol (int) – Height of an image in the polar coordinate system.


	width_reg (int) – Width of an image in the Cartesian coordinate system.


	height_reg (int) – Height of an image in the Cartesian coordinate system.






	Returns

	
	r_mat (array_like) – 2D array. Broadcast of the r-coordinates.


	theta_mat (array_like) – 2D array. Broadcast of the theta-coordinates.















	
algotom.util.utility.transform_slice_forward(mat, coord_mat=None)

	Transform a reconstructed image into polar coordinates.


	Parameters

	
	mat (array_like) – Square array. Reconstructed image.


	coord_mat (tuple of array_like, optional) – (Square array of x-coordinates , square array of y-coordinates) or
generated if None.






	Returns

	array_like – Transformed image.










	
algotom.util.utility.transform_slice_backward(mat, coord_mat=None)

	Transform a reconstructed image in polar coordinates back to rectangular
coordinates.


	Parameters

	
	mat (array_like) – Square array. Reconstructed image in polar coordinates.


	coord_mat (tuple of array_like, optional) – (Square array of r-coordinates , square array of theta-coordinates) or
generated if None.






	Returns

	array_like – Transformed image.










	
algotom.util.utility.make_2d_gaussian_window(height, width, sigma_x, sigma_y)

	Create a 2D Gaussian window.


	Parameters

	
	height (int) – Height of the image.


	width (int) – Width of the image.


	sigma_x (int) – Sigma in the x-direction.


	sigma_y (int) – Sigma in the y-direction.






	Returns

	array_like – 2D array.










	
algotom.util.utility.apply_gaussian_filter(mat, sigma_x, sigma_y, pad=None, mode=None)

	Filtering an image in the Fourier domain using a 2D Gaussian window.
Smaller is stronger.


	Parameters

	
	mat (array_like) – 2D array.


	sigma_x (int) – Sigma in the x-direction.


	sigma_y (int) – Sigma in the y-direction.


	pad (int or None) – Padding for the Fourier transform.


	mode (str, list of str, or tuple of str) – Padding method. One of options : ‘reflect’, ‘edge’, ‘constant’. Full
list is at:
https://numpy.org/doc/stable/reference/generated/numpy.pad.html






	Returns

	array_like – 2D array. Filtered image.










	
algotom.util.utility.apply_1d_regularizer(list_data, sijmat)

	Supplementary method for the method of “apply_regularization_filter”.
To apply a regularizer to an 1D-array.






	
algotom.util.utility.apply_regularization_filter(mat, alpha, axis=1, ncore=None)

	Apply a regularization filter using the method in Ref. [1].
Note that it’s computationally costly.


	Parameters

	
	mat (array_like) – 2D array


	alpha (float) – Regularization parameter, e.g. 0.001. Smaller is stronger.


	axis (int) – Axis along which to apply the filter.


	ncore (int or None) – Number of cpu-cores used for computing. Automatically selected if None.






	Returns

	array_like – 2D array. Smoothed image.





References

[1] : https://doi.org/10.1016/j.aml.2010.08.022






	
algotom.util.utility.transform_1d_window_to_2d(win_1d, order=1, mode='reflect')

	Transform a 1d-window to 2d-window.
Useful for designing a Fourier filter.


	Parameters

	
	win_1d (array_like) – 1D array.


	order (int, optional) – The order of the spline interpolation, default is 1.
The order has to be in the range 0-5.


	mode ({‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional) – The mode parameter determines how the input array is extended beyond
its boundaries. Default is ‘reflect’.






	Returns

	win_2d (array_like) – Square array, a 2D version of the 1d-window.










	
algotom.util.utility.detect_sample(sinogram, sino_type='180')

	To check if there is a sample in a sinogram using the “double-wedge”
property of the Fourier transform of the sinogram (Ref. [1]).


	Parameters

	
	sinogram (array_like) – 2D array. Sinogram image


	sino_type ({“180”, “360”}) – Sinogram type : 180-degree or 360-degree.






	Returns

	bool – True if there is a sample.





References

[1] : https://doi.org/10.1364/OE.418448






	
algotom.util.utility.fix_non_sample_areas(overlap_metadata, direction='horizontal')

	Used to fix overlap values of grid-cells without sample by copying from
its neighbours. Input is a 3d-array of overlapping values for each grid
cell. For example, to a 5 x 3 (n_row x n_column) grid scans, the shape for
overlapping values in the horizontal direction is:
5 x 2 (n_column - 1) x 2 (overlap, side).
The shape for overlapping values in the vertical direction is:
4 (n_row - 1) x 3 x 2 (overlap, side).
The order of calculating overlapping values in a grid is left-to-right,
top-to-bottom.


	Parameters

	
	overlap_metadata (array_like) – A matrix of overlap values of each grid-cell where each element is a
list of [overlap, side].


	direction ({“horizontal”, “vertical”}) – Direction of overlapping calculation.






	Returns

	metadata (array_like)










	
algotom.util.utility.locate_slice(slice_idx, height, overlap_metadata)

	Locate slice indices in grid-rows given a slice index of the reconstruction
data as a whole.


	Parameters

	
	slice_idx (int) – Slice index of full reconstruction data.


	height (int) – Height of a projection image of each grid-cell.


	overlap_metadata (array_like) – A matrix of overlap values of each grid-row where each element is a
list of [overlap, side]. Used to stitch the grid-data along the
row-direction.






	Returns

	list of int and float – If the slice is not in the overlapping area between two grid-rows, the
result is a list of [grid_row_index, slice_index, weight_factor]. If
the slice is in the overlapping area between two grid-rows, the result
is a list of [[grid_row_index_0, slice_index_0, weight_factor_0],
[grid_row_index_1, slice_index_1, weight_factor_1]]










	
algotom.util.utility.locate_slice_chunk(slice_start, slice_stop, height, overlap_metadata)

	Locate slice indices in grid-rows given slice indices of the reconstruction
data as a whole.


	Parameters

	
	slice_start (int) – Starting index of full reconstruction data.


	slice_stop (int) – Stopping index of full reconstruction data.


	height (int) – Height of a projection image of each grid-cell.


	overlap_metadata (array_like) – A matrix of overlap values of each grid-row where each element is a
list of [overlap, side]. Used to stitch the grid-data along the
row-direction.






	Returns

	list of list of int and float – List of results for each slice index. If a slice is not in the
overlapping area between two grid-rows, the result is a list of
[grid_row_index, slice_index, weight_factor]. If a slice is in the
overlapping area between two grid-rows, the result is a list of
[[grid_row_index_0, slice_index_0, weight_factor_0],
[grid_row_index_1, slice_index_1, weight_factor_1]].










	
algotom.util.utility.generate_spiral_positions(step, num_pos, height, width, spiral_shape=1.0)

	Generate Fermat spiral positions. Unit is pixel.


	Parameters

	
	step (int) – Step size in pixel. ~ 20-> 40


	num_pos (int) – Number of positions.


	height (int) – Height of the field of view (in pixel).


	width (int) – Width of the field of view (in pixel).


	spiral_shape (float, optional) – To define the spiral shape.






	Returns

	array_like – 2D array. List of (x,y) positions










	
algotom.util.utility.find_center_visual_sinograms(sino_180, output, start, stop, step=1, zoom=1.0, display=False)

	For visually finding the center-of-rotation (COR) using converted
360-degree sinograms from a 180-degree sinogram at different
CORs (Ref. [1]).


	Parameters

	
	sino_180 (array_like) – 2D array. 180-degree sinogram.


	output (str) – Base folder for saving converted 360-degree sinograms.


	start (float) – Starting point for searching CoR.


	stop (float) – Ending point for searching CoR.


	step (float) – Searching step.


	zoom (float) – To resize output images. For example, 0.5 <=> reduce the size of
output images by half.


	display (bool) – Print the output if True.






	Returns

	str – Folder path to tif images.





References

[1] : https://doi.org/10.1364/OE.22.019078






	
algotom.util.utility.find_center_visual_slices(*args, **kwargs)

	







            

          

      

      

    

  

    
      
          
            
  
7.5.4. algotom.util.correlation

Module of correlation-based methods for finding shifts between images or
stacks of images. The methods are designed to be flexible to:



	Run on multicore CPU or GPU.


	Use small/large RAM or small/large GPU memory.


	Work with small/large size of data.


	Find shifts locally or globally.







Functions:







	normalize_image(mat)

	Normalize an image.



	generate_correlation_map(ref_mat, mat[, ...])

	Generate the correlation map (Pearson coefficients) between two images by shifting the second image over the reference image.



	locate_peak(mat[, sub_pixel, method, dim, ...])

	Locate the position of the maximum value of a 2d-array with sub-pixel accuracy.



	find_shift_based_correlation_map(ref_mat, mat)

	Find the relative translations of the second image against the first image using the correlation map generated by sliding the 2nd image over the 1st one.



	find_local_shifts(ref_mat, mat[, dim, ...])

	To find local shifts (in x and y direction) between two images by selecting a small area/volume of the second image and sliding over a slightly larger area/volume of the reference image.



	find_global_shift_based_local_shifts(...[, ...])

	Find global shift between two images based on finding local shifts.



	find_local_shifts_umpa(ref_mat, mat[, ...])

	To find local shifts (in x and y direction) of each pixel between two 3d-images by selecting a small volume of the second image and sliding over a slightly larger volume of the reference image.







	
algotom.util.correlation.normalize_image(mat)

	Normalize an image.


	Parameters

	mat (array_like) – 2D or 3D array.



	Returns

	array_like – 2D or 3D array. Normalized image.










	
algotom.util.correlation.generate_correlation_map(ref_mat, mat, gpu=False, block=(16, 16))

	Generate the correlation map (Pearson coefficients) between two images by
shifting the second image over the reference image.


	Parameters

	
	ref_mat (array_like) – 2D or 3D array. The reference image (e.g. with height0 x width0).


	mat (array_like) – 2D or 3D array. The second image (e.g. with height1 x width1). If 3D,
the size of the first dimension (i.e. depth) must be the same as the
reference image.


	gpu (bool, optional) – Use GPU for computing if True.


	block (tuple of two integer-values, optional) – Size of a GPU block. E.g. (4,4), (8, 8), …






	Returns

	array_like – 2D array with the size of (height0-height1+1) x (width0-width1+1).










	
algotom.util.correlation.locate_peak(mat, sub_pixel=True, method='diff', dim=2, size=3, max_peak=True)

	Locate the position of the maximum value of a 2d-array with sub-pixel
accuracy.


	Parameters

	
	mat (array_like) – 2D array.


	sub_pixel (bool, optional) – Enable sub-pixel location.


	method ({“diff”, “poly_fit”}) – Method for finding sub-pixel shift. Two options: a differential
method (Ref. [1]) or a polynomial method (Ref. [2]).


	dim ({1, 2}) – Searching dimension for sub-pixel location.


	size (int) – Window size around the integer location of the maximum value used for
sub-pixel searching.


	max_peak (bool, optional) – Used to locate the minimum value if False.






	Returns

	list of two floats – Sub-pixel position (x, y), i.e. (column, row), of the maximum value.





References

[1] : https://doi.org/10.48550/arXiv.0712.4289

[2] : https://doi.org/10.1088/0957-0233/17/6/045






	
algotom.util.correlation.find_shift_based_correlation_map(ref_mat, mat, margin=10, axis=None, sub_pixel=True, method='diff', dim=2, size=3, gpu=False, block=(16, 16))

	Find the relative translations of the second image against the first image
using the correlation map generated by sliding the 2nd image over the 1st
one. If the inputs are 3d-arrays, the size of the first axis must be the
same.


	Parameters

	
	ref_mat (array_like) – 2D or 3D array. Reference image.


	mat (array_like) – 2D or 3D array. The second image. If 3D, the size of the first
dimension (i.e. depth) must be the same as the reference image.


	margin (int, optional) – If the second image and the first image are the same size, the second
image will be cropped with the margin amount from the edges before
sliding. Basically, this value defines the sliding range.


	axis ({0, 1, None}) – To select the axis for sliding. If the inputs are 3d-arrays, 0 and 1
corresponding to axis-1 and axis-2 of a 3d-array.


	sub_pixel (bool, optional) – Enable sub-pixel location.


	method ({“diff”, “poly_fit”}) – Method for finding sub-pixel shift. Two options: a differential
method (Ref. [1]) or a polynomial method (Ref. [2]).


	dim ({1, 2}) – Searching dimension for sub-pixel location.


	size (int) – Window size around the integer location of the maximum value used for
sub-pixel searching.


	gpu (bool, optional) – Use GPU for computing if True.


	block (tuple of two integer-values, optional) – Size of a GPU block. E.g. (4,4), (8, 8), …






	Returns

	list of 2 floats – The shifts in x and y-direction of the second image referred to the
middle of the reference image.





References

[1] : https://doi.org/10.48550/arXiv.0712.4289

[2] : https://doi.org/10.1088/0957-0233/17/6/045






	
algotom.util.correlation.find_local_shifts(ref_mat, mat, dim=1, win_size=7, margin=10, method='diff', size=3, gpu=False, block=(16, 16), ncore=None, norm=True, norm_global=False, chunk_size=100)

	To find local shifts (in x and y direction) between two images by selecting
a small area/volume of the second image and sliding over a slightly larger
area/volume of the reference image.


	Parameters

	
	ref_mat (array_like) – 2D/3D array, can be a numpy array or hdf object. Reference image.


	mat (array_like) – 2D/3D array, can be a numpy array or hdf object. The second image, must
be the same size as the reference image.


	dim ({1, 2}) – To find the shifts (in x and y) separately or together.


	win_size (int) – Size of local areas in the second image.


	margin (int) – To define the sliding range of the second image.


	method ({“diff”, “poly_fit”}) – Method for finding sub-pixel shift. Two options: a differential
method (Ref. [1]) or a polynomial method (Ref. [2]). The “poly_fit”
option is not available if using GPU.


	size (int) – Window size around the integer location of the maximum value used for
sub-pixel location. Adjustable if using the polynomial method.


	gpu ({False, True, “hybrid”}) – Use GPU for computing if True or in “hybrid” mode.


	block (tuple of two integer-values, optional) – Size of a GPU block. E.g. (8, 8), (16, 16), (32, 32), …


	ncore (int or None) – Number of cpu-cores used for computing. Automatically selected if None.


	norm (bool, optional) – Normalizing the inputs if True.


	norm_global (bool, optional) – Normalize by using the full size of the inputs if True.


	chunk_size (int or None) – Size of each chunk extracted along the height of the image.






	Returns

	list of two 2d-arrays – x-shift array and y-shift array. Zeros at the outer area of the size of
(margin + win_size // 2).





References

[1] : https://doi.org/10.48550/arXiv.0712.4289

[2] : https://doi.org/10.1088/0957-0233/17/6/045






	
algotom.util.correlation.find_global_shift_based_local_shifts(ref_mat, mat, win_size, margin, list_ij=None, num_point=None, global_value='mixed', gpu=False, block=32, sub_pixel=True, method='diff', size=3, ncore=None, norm=False, return_list=False)

	Find global shift between two images based on finding local shifts.


	Parameters

	
	ref_mat (array_like) – 2D array. Reference image.


	mat (array_like) – 2D array. The 2nd image. Must be the same size as the reference image.


	win_size (int) – To define the size of the area around the selected pixel of the 2nd
image. E.g. 41, 61, ..


	margin (int) – To define the searching range (in pixel) for finding shift.
E.g. 20, 30,…


	list_ij (list of lists of int or None) – List of indices of points used for local search. Accept the value of
[i_index, j_index] for a single point or
[[i_index0, i_index1,…], [j_index0, j_index1,…]]
for multiple points. Automatically generated if None.


	num_point (int or None) – Number of points used for local search if list_ij is None.


	global_value ({“median”, “mean”, “mixed”}) – Method for calculating the global value from local values.


	gpu (bool, optional) – Use GPU for computing if True. If win_size and image size is large
(e.g. > 201 x 2k x 2k), using CPU may be better.


	block (int, optional) – Size of a GPU block if using GPU. E.g. 16, 32, 64, …


	sub_pixel (bool, optional) – Enable sub-pixel location.


	method ({“diff”, “poly_fit”}) – Method for finding sub-pixel shift. Two options: a differential
method (Ref. [1]) or a polynomial method (Ref. [2]). The “poly_fit”
option is not available if using GPU.


	size (int, optional) – Window size around the integer location of the maximum value used for
sub-pixel searching.


	ncore (int or None) – Number of cpu-cores used for computing. Automatically selected if None.


	norm (bool, optional) – Normalize the input images if True.


	return_list (bool) – Return all local values if True.






	Returns

	
	float or list of float – Shift in x-direction. Return a list of float if return_list is True.


	float or list of float – Shift in y-direction. Return a list of float if return_list is True.
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algotom.util.correlation.find_local_shifts_umpa(ref_mat, mat, win_size=7, margin=10, method='diff', size=3, gpu=True, block=(16, 16), ncore=None, chunk_size=100, filter_name='hamming', dark_signal=False)

	To find local shifts (in x and y direction) of each pixel between
two 3d-images by selecting a small volume of the second image and sliding
over a slightly larger volume of the reference image. The cost function
uses the formula in Ref. [1], known as UMPA.


	Parameters

	
	ref_mat (array_like) – 3D array, can be a numpy array or hdf object. Reference image.


	mat (array_like) – 3D array, can be a numpy array or hdf object. The second image, must
be the same size as the reference image.


	win_size (int) – Size of local areas in the second image.


	margin (int) – To define the sliding range of the second image.


	method ({“diff”, “poly_fit”}) – Method for finding sub-pixel shift. Two options: a differential
method (Ref. [2]) or a polynomial method (Ref. [3]). The “poly_fit”
option is not available if using GPU.


	size (int) – Window size around the integer location of the maximum value used for
sub-pixel location. Adjustable if using the polynomial method.


	gpu (bool) – Use GPU for computing if True.


	block (tuple of two integer-values, optional) – Size of a GPU block. E.g. (8, 8), (16, 16), (32, 32), …


	ncore (int or None) – Number of cpu-cores used for computing. Automatically selected if None.


	chunk_size (int or None) – Size of each chunk extracted along the height of the image. Use to
avoid the out of memory problem.


	filter_name ({None, “hann”, “bartlett”, “blackman”, “hamming”,                  “nuttall”, “parzen”, “triang”}) – To select a smoothing filter.


	dark_signal (bool) – Return both dark-signal image and transmission-signal image if True






	Returns

	list of two 2d-arrays or four 2d-arrays – x-shift image and y-shift image. Zeros at the outer area of the size of
(margin + win_size // 2). And/or dark-signal image and
transmission-signal image If the ‘dark_signal’ option is True.
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8. Credits


8.1. Citations

If Algotom is useful for your project, citing the following article [C1] is very much
appreciated.



	C1

	Nghia T. Vo, Robert C. Atwood, Michael Drakopoulos, and Thomas Connolley. Data processing methods and data acquisition for samples larger than the field of view in parallel-beam tomography. Opt. Express, 29(12):17849–17874, Jun 2021. URL: http://www.opticsexpress.org/abstract.cfm?URI=oe-29-12-17849, doi:10.1364/OE.418448 [https://doi.org/10.1364/OE.418448].







Algorithms, methods, or techniques implemented in a scientific software package
are crucial for its success. This is the same for Algotom. Acknowledging
algorithms you use through Algotom is also very much appreciated.
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9. Highlights

Algotom was used for some experiments featured on media:


	Scanning Moon rocks and Martian meteorites [https://www.diamond.ac.uk/Home/News/LatestNews/2019/17-07-2019.html]
using helical scans with offset rotation-axis. Featured on Reuters [https://www.reuters.com/article/us-space-exploration-moon-rocks-idUSKCN1UC16V].

[image: ../_images/Moon_rock_Mars_meteorite.jpg]


	Scanning Herculaneum Scrolls [https://www.diamond.ac.uk/Home/News/LatestNews/2019/03-10-2019.html]
using grid scans with offset rotation-axis respect to the grid’s FOV. Featured on BBC [https://www.bbc.co.uk/news/av/uk-england-oxfordshire-49926789].
The latest updates on the scroll’s reading progress are here [https://www.nature.com/articles/d41586-023-03212-1].

[image: ../_images/Herculaneum_scroll.jpg]


	Scanning Little Foot fossil [https://www.diamond.ac.uk/Home/News/LatestNews/2021/02-03-21.html]
using two-camera detector with offset rotation-axis. Featured on BBC [https://www.bbc.co.uk/news/science-environment-56241509].

[image: ../_images/Little_foot.jpg]








            

          

      

      

    

  

    
      
          
            
  
10. Quick links


	How to set up Python workspace for coding and installing libraries:


	Section 4.1. [https://algotom.readthedocs.io/en/latest/toc/section4/section4_1.html]


	Section 1.1. [https://algotom.readthedocs.io/en/latest/toc/section1/section1_1.html]






	How to read/write or explore hdf/nxs/h5 files:


	Section 4.2.1. [https://algotom.readthedocs.io/en/latest/toc/section4/section4_2.html#nxs-hdf-files]


	Section 1.2.1 [https://algotom.readthedocs.io/en/latest/toc/section1/section1_2.html#hdf-format]


	Broh5 software. [https://github.com/algotom/broh5]


	API of loading a hdf file. [https://algotom.readthedocs.io/en/latest/toc/api/algotom.io.loadersaver.html#algotom.io.loadersaver.load_hdf]


	API of writing to a hdf file. [https://algotom.readthedocs.io/en/latest/toc/api/algotom.io.loadersaver.html#algotom.io.loadersaver.open_hdf_stream]


	Script for exploring a hdf file. [https://github.com/algotom/algotom/blob/master/examples/example_01_explore_hdf_tomo_data.py]






	How to read/write tiff images:


	Section 1.2.2. [https://algotom.readthedocs.io/en/latest/toc/section1/section1_2.html#tiff-format]


	Section 4.2.2. [https://algotom.readthedocs.io/en/latest/toc/section4/section4_2.html#tiff-files]


	Loader/saver API. [https://algotom.readthedocs.io/en/latest/toc/api/algotom.io.loadersaver.html]






	How to process standard tomography data:


	Workflow:


	Section 1.4. [https://algotom.readthedocs.io/en/latest/toc/section1/section1_4.html]


	Section 4.5. [https://algotom.readthedocs.io/en/latest/toc/section4/section4_5.html]






	Command line interface scripts: few-slices reconstruction, full reconstruction, data reduction:


	Common data processing workflow. [https://github.com/algotom/algotom/tree/master/examples/common_data_processing_workflow]






	Scripts:


	Reconstructing a few slices of a standard scan. [https://github.com/algotom/algotom/blob/master/examples/example_05_reconstruct_std_scan.py]


	Full size reconstruction of a standard scan. [https://github.com/algotom/algotom/blob/master/examples/example_05_reconstruct_std_scan_full_size.py]










	How to process half-acquisition tomography (360-degree scanning with offset center) data:


	Demo script. [https://github.com/algotom/algotom/blob/master/examples/example_02_reconstruct_360_degree_scan_with_offset_center.py]


	Section 1.4.8.2. [https://algotom.readthedocs.io/en/latest/toc/section1/section1_4.html#sinogram-stitching-for-a-half-acquisition-scan]






	How to apply distortion correction:


	Reconstruct a scan with distortion correction. [https://github.com/algotom/algotom/blob/master/examples/example_06_reconstruct_std_scan_with_distortion_correction.py]


	Use Discorpy for finding distortion coefficients. [https://github.com/DiamondLightSource/discorpy?tab=readme-ov-file#demonstrations]






	How to choose ring artifact removal methods:


	Section 4.4. [https://algotom.readthedocs.io/en/latest/toc/section4/section4_4.html]


	Section 4.5.4. [https://algotom.readthedocs.io/en/latest/toc/section4/section4_5.html#tweaking-parameters-of-preprocessing-methods]


	Sarepy documentation about ring artifacts in tomography. [https://sarepy.readthedocs.io/toc/section3.html]






	How to find center of rotation (rotation axis):


	Section 4.5.3. [https://algotom.readthedocs.io/en/latest/toc/section4/section4_5.html#finding-the-center-of-rotation]






	How to process time-series tomography data:


	Demo scripts [https://github.com/algotom/algotom/tree/master/examples/time_series_tomography]






	How to process grid-scanning tomography data (tiled scans):


	Reconstruct a few slices. [https://github.com/algotom/algotom/blob/master/examples/example_03_reconstruct_few_slices_grid_scan_with_offset_center.py]


	Full reconstruction: step 1. [https://github.com/algotom/algotom/blob/master/examples/example_07_full_reconstruction_a_grid_scan_step_01.py]


	Full reconstruction: step 2. [https://github.com/algotom/algotom/blob/master/examples/example_07_full_reconstruction_a_grid_scan_step_02.py]


	Full reconstruction: step 3. [https://github.com/algotom/algotom/blob/master/examples/example_07_full_reconstruction_a_grid_scan_step_03_downsample.py]






	How to process helical tomography data:


	Demo script. [https://github.com/algotom/algotom/blob/master/examples/example_04_reconstruct_helical_scan_with_offset_center.py]






	How to perform data reduction of reconstructed volume (cropping, rescaling, downsampling, reslicing,…):


	Section 4.5.8. [https://algotom.readthedocs.io/en/latest/toc/section4/section4_5.html#downsampling-rescaling-and-reslicing-reconstructed-volume]


	Command line interface script. [https://github.com/algotom/algotom/blob/master/examples/common_data_processing_workflow/data_reduction_cli.py]






	How to process speckle-based phase-contrast tomography data:


	Section 5.1. [https://algotom.readthedocs.io/en/latest/toc/section5/section5_1.html]


	Demo scripts. [https://github.com/algotom/algotom/tree/master/examples/speckle_based_tomography]






	How to correct tilted tomography data:


	Demo script 1. [https://github.com/tomopy/tomopy/issues/602#issuecomment-1440808547]


	Demo script 2. [https://github.com/algotom/algotom/blob/master/examples/example_09_generate_tilted_sinogram.py]


	Tomography alignment tutorial. [https://algotom.readthedocs.io/en/latest/toc/section1/section1_6.html]






	How to automate the workflow:


	Section 4.5.7. [https://algotom.readthedocs.io/en/latest/toc/section4/section4_5.html#automating-the-workflow]


	Utility scripts. [https://github.com/algotom/algotom/tree/master/examples/utilities]






	How tomography works:


	Section 1.3. [https://algotom.readthedocs.io/en/latest/toc/section1/section1_3.html]


	Section 1.6. [https://algotom.readthedocs.io/en/latest/toc/section1/section1_6.html]






	How to generate simulated data:


	Simulation module. [https://algotom.readthedocs.io/en/latest/toc/api/algotom.util.simulation.html]


	Demo script. [https://github.com/algotom/algotom/blob/master/examples/example_08_generate_simulation_data.py]






	How to customize ring-artifact removal methods:


	Section 4.3. [https://algotom.readthedocs.io/en/latest/toc/section4/section4_3.html]






	Tools for finding image shift, stitching images:


	Correlation module. [https://algotom.readthedocs.io/en/latest/toc/api/algotom.util.correlation.html]


	Conversion module. [https://algotom.readthedocs.io/en/latest/toc/api/algotom.prep.conversion.html]






	Tools for phase unwrapping, phase retrieval:


	Phase module. [https://algotom.readthedocs.io/en/latest/toc/api/algotom.prep.phase.html]


	Section 5.1.3. [https://algotom.readthedocs.io/en/latest/toc/section5/section5_1.html#data-processing]






	Datasets for testing algorithms:


	Zenodo. [https://zenodo.org/search?q=nghia%20t.%20vo&f=resource_type%3Adataset&l=list&p=1&s=10&sort=bestmatch]


	Tomobank. [https://tomobank.readthedocs.io/en/latest/source/data.html]






	Parallel processing, GPU programming, and high-performance computing with Numba:


	Section 1.5. [https://algotom.readthedocs.io/en/latest/toc/section1/section1_5.html]


	GPU programming. [https://github.com/algotom/algotom/blob/f096bf2d202efe1261d0a5e14823efba35a2b542/algotom/rec/reconstruction.py#L153]


	Compiling python code. [https://github.com/algotom/algotom/blob/f096bf2d202efe1261d0a5e14823efba35a2b542/algotom/rec/reconstruction.py#L265]






	Common mistakes and useful tips:


	Section 4.5.9. [https://algotom.readthedocs.io/en/latest/toc/section4/section4_5.html#common-mistakes-and-useful-tips]
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